To promote the production of molybdenum-99 in the United States for medical isotope production, and to condition and phase out the export of highly enriched uranium for the production of medical isotopes.

In the House of Representatives
July 21, 2009

Mr. Markey of Massachusetts (for himself and Mr. Upton) introduced the following bill; which was referred to the Committee on Energy and Commerce

A BILL

To promote the production of molybdenum-99 in the United States for medical isotope production, and to condition and phase out the export of highly enriched uranium for the production of medical isotopes.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled,

SECTION 1. SHORT TITLE.

This Act may be cited as the “American Medical Isotopes Production Act of 2009”.

SEC. 2. FINDINGS.

Congress finds the following:
(1) Molybdenum-99 is a critical medical isotope whose decay product technecium-99m is used in approximately two-thirds of all diagnostic medical isotope procedures in the United States, or 16 million medical procedures annually, including for the detection of cancer, heart disease, and thyroid disease, investigating the operation of the brain and kidney, imaging stress fractures, and tracking cancer stages.

(2) Molybdenum-99 has a half-life of 66 hours, and decays at a rate of approximately one percent per hour after production. As such, molybdenum-99 cannot be stockpiled. Instead, molybdenum-99 production must be scheduled to meet the projected demand and any interruption of the supply chain from production, to processing, packaging, distribution, and use can disrupt patient care.

(3) There are no facilities within the United States that are dedicated to the production of molybdenum-99 for medical uses. The United States must import molybdenum-99 from foreign production facilities, and is dependent upon the continued operation of these foreign facilities for millions of critical medical procedures annually.

(4) Most reactors in the world which produce molybdenum-99 utilize highly enriched uranium,
which can also be used in the construction of nuclear weapons. In January 2009, the National Academy of Sciences encouraged molybdenum-99 producers to convert from highly enriched uranium to low enriched uranium, and found that there are “no technical reasons that adequate quantities cannot be produced from LEU targets in the future” and that “a 7-10 year phase-out period would likely allow enough time for all current HEU-based producers to convert”.

(5) The 51-year-old National Research Universal reactor in Canada, which is responsible for producing approximately sixty percent of United States demand for molybdenum-99 under normal conditions, was shut down unexpectedly May 14, 2009, after the discovery of a leak of radioactive water. It is unclear whether the National Research Universal reactor will be able to resume production of molybdenum-99.

(6) The United States currently faces an acute shortage of molybdenum-99 and its decay product technetium-99m due to technical problems which have seriously interrupted operations of foreign nuclear reactors producing molybdenum-99.
(7) As a result of the critical shortage of molybdenum-99, patient care in the United States is suffering. Medical procedures requiring technetium-99 are being rationed or delayed, and alternative treatments which are less effective, more costly, and may result in increased radiation doses to patients are being substituted in lieu of technetium-99.

(8) The radioactive isotope molybdenum-99 and its decay product technetium-99m are critical to the health care of Americans, and the continued availability of these isotopes, in a reliable and affordable manner, is in the interest of the United States.

(9) The United States should move expeditiously to ensure that an adequate and reliable supply of molybdenum-99 can be produced in the United States, without the use of highly enriched uranium.

(10) The United States should accelerate its efforts to convert nuclear reactors worldwide away from the use of highly enriched uranium, which can be used in nuclear weapons, to low enriched uranium. Converting nuclear reactors away from the use of highly enriched uranium is a critically important element of United States efforts to prevent nuclear terrorism, and supports the goal announced in
Prague by President Barack Obama on April 5, 2009, to create “a new international effort to secure all vulnerable nuclear material around the world within four years”.

SEC. 3. IMPROVING THE RELIABILITY OF DOMESTIC MEDICAL ISOTOPE SUPPLY.

(a) Medical Isotope Development Projects.—

(1) In general.—The Secretary of Energy shall establish a program to evaluate and support projects for the production in the United States, without the use of highly enriched uranium, of significant quantities of molybdenum-99 for medical uses.

(2) Criteria.—Projects shall be judged against the following primary criteria:

(A) The length of time necessary for the proposed project to begin production of molybdenum-99 for medical uses within the United States.

(B) The capability of the proposed project to produce a significant percentage of United States demand for molybdenum-99 for medical uses.

(C) The cost of the proposed project.
(3) EXEMPTION.—An existing reactor fueled with highly enriched uranium shall not be disqualified from the program if the Secretary of Energy determines that—

(A) there is no alternative nuclear reactor fuel, enriched in the isotope U-235 to less than 20 percent, that can be used in that reactor; and

(B) the reactor operator has provided assurances that, whenever an alternative nuclear reactor fuel, enriched in the isotope U-235 to less than 20 percent, can be used in that reactor, it will use that alternative in lieu of highly enriched uranium.

(4) AUTHORIZATION OF APPROPRIATIONS.—
There are authorized to be appropriated to the Secretary of Energy for carrying out the program under paragraph (1) $163,000,000 for fiscal years 2010 through 2014.

(b) DEVELOPMENT ASSISTANCE.—The Secretary of Energy shall establish a program to provide assistance for—

(1) the development of fuels, targets, and processes for domestic molybdenum-99 production that do not use highly enriched uranium; and
(2) commercial operations using the fuels, targets, and processes described in paragraph (1).

(c) Uranium Lease and Take Back.—The Secretary of Energy shall establish a program to make low enriched uranium available, through lease contracts, for irradiation for the production of molybdenum-99 for medical uses. The lease contracts shall provide for the Secretary to retain responsibility for the final disposition of radioactive waste created by the irradiation, processing, or purification of leased uranium.

SEC. 4. EXPORTS.

Section 134 of the Atomic Energy Act of 1954 (42 U.S.C. 2160d(b)) is amended by striking subsections b. and c. and inserting in lieu thereof the following:

“b. Effective 7 years after the date of enactment of the American Medical Isotopes Production Act of 2009, the Commission may not issue a license for the export of highly enriched uranium from the United States.

“c. The period referred to in subsection (b) may be extended for no more than three years if, no earlier than 6 years after the date of enactment of the Act, the Secretary of Energy certifies to the appropriate Congressional committees that—

“(1) there is insufficient global supply of molybdenum-99 produced without the use of highly en-

•HR 3276 IH
riched uranium available to satisfy the domestic
United States market, and

“(2) the export of United States-origin highly
enriched uranium for the purposes of medical iso-
tope production is the most effective temporary
means to increase the supply of molybdenum-99 to
the domestic United States market.”.

SEC. 5. REPORT ON DISPOSITION OF EXPORTS.

Not later than 1 year after the date of the enactment
of this Act, the Chairman of the Nuclear Regulatory Com-
mission, after consulting with other relevant agencies,
shall submit to the Congress a report detailing the current
disposition of previous United States exports of highly en-
riched uranium, including—

(1) their location;

(2) whether they are irradiated;

(3) whether they have been used for the pur-
pose stated in their export license;

(4) whether they have been used for an alter-
native purpose and, if so, whether such alternative
purpose has been explicitly approved by the Commis-
sion;

(5) the year of export, and reimportation, if ap-
licable;
(6) their current physical and chemical forms; and

(7) whether they are being stored in a manner which adequately protects against theft and unauthorized access.

SEC. 6. DOMESTIC MEDICAL ISOTOPE PRODUCTION.

(a) In General.—Chapter 10 of the Atomic Energy Act of 1954 (42 U.S.C. 2131 et seq.) is amended by adding at the end the following new section:

“SEC. 112. DOMESTIC MEDICAL ISOTOPE PRODUCTION. a. The Commission may issue a license, or grant an amendment to an existing license, for the use in the United States of highly enriched uranium as a target for medical isotope production in a nuclear reactor, only if, in addition to any other requirement of this Act—

“(1) the Commission determines that—

“(A) there is no alternative medical isotope production target, enriched in the isotope U-235 to less than 20 percent, that can be used in that reactor; and

“(B) the proposed recipient of the medical isotope production target has provided assurances that, whenever an alternative medical isotope production target can be used in that reac-
tor, it will use that alternative in lieu of highly
enriched uranium; and

“(2) the Secretary of Energy has certified that
the United States Government is actively supporting
the development of an alternative medical isotope
production target that can be used in that reactor.

“b. As used in this section—

“(1) the term ‘alternative medical isotope pro-
duction target’ means a nuclear reactor target which
is enriched to less than 20 percent of the isotope U-
235; and

“(2) a target ‘can be used’ in a nuclear re-
search or test reactor if—

“(A) the target has been qualified by the
Reduced Enrichment Research and Test Reac-
tor Program of the Department of Energy; and

“(B) use of the target will permit the large
majority of ongoing and planned experiments
and isotope production to be conducted in the
reactor without a large percentage increase in
the total cost of operating the reactor.”.

(b) TABLE OF CONTENTS.—The table of contents for
the Atomic Energy Act of 1954 is amended by inserting
the following new item after the item relating to section
111:

“Sec. 112. Domestic medical isotope production.”.
SEC. 7. ANNUAL DEPARTMENT OF ENERGY REPORTS.

The Secretary of Energy shall report to Congress no later than one year after the date of enactment of this Act, and annually thereafter for 5 years, on Department of Energy actions to support the production in the United States, without the use of highly enriched uranium, of molybdenum-99 for medical uses. These reports shall include the following:

1. For medical isotope development projects—
 (A) the names of any recipients of Department of Energy support under section 3 of this Act;
 (B) the amount of Department of Energy funding committed to each project;
 (C) the milestones expected to be reached for each project during the year for which support is provided;
 (D) how each project is expected to support the increased production of molybdenum-99 for medical uses;
 (E) the findings of the evaluation of projects under section 3(a)(2) of this Act; and
 (F) the ultimate use of any Department of Energy funds used to support projects under section 3 of this Act.
(2) A description of actions taken in the previous year by the Secretary of Energy to ensure the safe disposition of radioactive waste from used molybdenum-99 targets.

SEC. 8. NATIONAL ACADEMY OF SCIENCES REPORT.

The Secretary of Energy shall enter into an arrangement with the National Academy of Sciences to conduct a study of the state of molybdenum-99 production and utilization, to be provided to the Congress not later than 5 years after the date of enactment of this Act. This report shall include the following:

(1) For molybdenum-99 production—

(A) a list of all facilities in the world producing molybdenum-99 for medical uses, including an indication of whether these facilities use highly enriched uranium in any way;

(B) a review of international production of molybdenum-99 over the previous 5 years, including—

(i) whether any new production was brought online;

(ii) whether any facilities halted production unexpectedly; and

(iii) whether any facilities used for production were decommissioned or other-
wise permanently removed from service; and

(C) an assessment of progress made in the previous 5 years toward establishing domestic production of molybdenum-99 for medical uses.

(2) An assessment of the progress made by the Department of Energy and others to eliminate all worldwide use of highly enriched uranium in reactor fuel, reactor targets, and medical isotope production facilities.

SEC. 9. DEFINITIONS.

In this Act the following definitions apply:

(1) HIGHLY ENRICHED URANIUM.—The term “highly enriched uranium” means uranium enriched to 20 percent or greater in the isotope U-235.

(2) LOW ENRICHED URANIUM.—The term “low enriched uranium” means uranium enriched to less than 20 percent in the isotope U-235.

(3) APPROPRIATE CONGRESSIONAL COMMITTEES.—The term “appropriate Congressional committees” means the House Committee on Energy and Commerce and the Senate Committee on Energy and Natural Resources.