Health Physics Society
41st Annual Meeting

Seattle, Washington

July 21-25, 1996

Final Program
Table of Contents

1996 Program Committee & Officers .. 2
General Information .. 4
Tours and Activities .. 6
Important Events .. 7
Committee Meetings ... 8
Scientific Program ... 10
PEP Information .. 32
1996 Exhibitors .. 48
Author Index .. 55
Sheraton & Convention Center Floor Plans ... 62
Exhibits/Exhibit Hall Floor Plan .. Inside Back Cover
Meeting-at-a-Glance .. Back Cover

Registration Hours

Saturday, July 20 .. 3:00 - 6:00 pm
Sunday, July 21 .. 7:30 am - 8:00 pm
Monday, July 22 ... 8:00 am - 5:00 pm
Tuesday, July 23 ... 8:00 am - 5:00 pm
Wednesday, July 24 .. 8:00 am - 5:00 pm
Thursday, July 25 .. 8:00 am - Noon

Affiliates Program

Monday, July 22 .. Noon-5:00 pm
Tuesday, July 23 ... 9:30 am - 5:00 pm
Wednesday, July 24 .. 9:30 am - 4:00 pm
Past Presidents

<table>
<thead>
<tr>
<th>Year</th>
<th>President</th>
</tr>
</thead>
<tbody>
<tr>
<td>1956-1957</td>
<td>K. Z. Morgan</td>
</tr>
<tr>
<td>1957-1958</td>
<td>F. P. Cowan</td>
</tr>
<tr>
<td>1958-1959</td>
<td>L. S. Taylor</td>
</tr>
<tr>
<td>1959-1960</td>
<td>E. E. Anderson</td>
</tr>
<tr>
<td>1960-1961</td>
<td>J. S. Laughlin</td>
</tr>
<tr>
<td>1961-1962</td>
<td>W. D. Claus</td>
</tr>
<tr>
<td>1962-1963</td>
<td>C. M. Patterson</td>
</tr>
<tr>
<td>1963-1964</td>
<td>W. T. Ham, Jr.</td>
</tr>
<tr>
<td>1964-1965</td>
<td>H. L. Andrews</td>
</tr>
<tr>
<td>1965-1966</td>
<td>M. Eisenbud</td>
</tr>
<tr>
<td>1966-1967</td>
<td>J. R. Horan</td>
</tr>
<tr>
<td>1967-1968</td>
<td>W. S. Snyder</td>
</tr>
<tr>
<td>1968-1969</td>
<td>W. H. Langham</td>
</tr>
<tr>
<td>1969-1970</td>
<td>J. N. Stannard</td>
</tr>
<tr>
<td>1970-1971</td>
<td>C. C. Palminter</td>
</tr>
<tr>
<td>1971-1972</td>
<td>D. W. Moeller</td>
</tr>
<tr>
<td>1972-1973</td>
<td>R. D. Evans</td>
</tr>
<tr>
<td>1973-1974</td>
<td>N. Wald</td>
</tr>
<tr>
<td>1974-1975</td>
<td>J. C. Hart</td>
</tr>
<tr>
<td>1975-1976</td>
<td>P. L. Ziemer</td>
</tr>
<tr>
<td>1976-1977</td>
<td>J. C. Villfort</td>
</tr>
<tr>
<td>1977-1978</td>
<td>J. A. Auxier</td>
</tr>
<tr>
<td>1978-1979</td>
<td>C. M. Unruh</td>
</tr>
<tr>
<td>1979-1980</td>
<td>M. W. Carter</td>
</tr>
<tr>
<td>1981-1982</td>
<td>C. B. Meinhold</td>
</tr>
<tr>
<td>1982-1983</td>
<td>R. J. Cloutier</td>
</tr>
<tr>
<td>1983-1984</td>
<td>B. L. Rich</td>
</tr>
<tr>
<td>1984-1985</td>
<td>W. J. Bair</td>
</tr>
<tr>
<td>1985-1986</td>
<td>J. E. Watson, Jr.</td>
</tr>
<tr>
<td>1986-1987</td>
<td>J. W. Poston</td>
</tr>
<tr>
<td>1987-1988</td>
<td>D. A. Waite</td>
</tr>
<tr>
<td>1988-1989</td>
<td>R. E. Alexander</td>
</tr>
<tr>
<td>1989-1990</td>
<td>R. L. Kathren</td>
</tr>
<tr>
<td>1990-1991</td>
<td>G. S. Roessler</td>
</tr>
<tr>
<td>1992-1993</td>
<td>K. J. Schiager</td>
</tr>
<tr>
<td>1993-1994</td>
<td>K. L. Mossman</td>
</tr>
<tr>
<td>1994-1995</td>
<td>Marvin Goldman</td>
</tr>
</tbody>
</table>

Officers

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>President</td>
<td>William A. Mills</td>
<td>1956-1957</td>
</tr>
<tr>
<td>President-Elect</td>
<td>Richard J. Vetter</td>
<td>1957-1958</td>
</tr>
<tr>
<td>Treasurer</td>
<td>Keith H. Dinger</td>
<td>1958-1959</td>
</tr>
<tr>
<td>Secretary</td>
<td>Raymond A. Guilmette</td>
<td>1959-1960</td>
</tr>
<tr>
<td>Treasurer-Elect</td>
<td>Raymond H. Johnson, Jr.</td>
<td>1960-1961</td>
</tr>
<tr>
<td>Executive Secretary</td>
<td>Keith H. Dinger</td>
<td>1961-1962</td>
</tr>
<tr>
<td>Treasurer-Elect</td>
<td>James E. Tappin</td>
<td>1962-1963</td>
</tr>
<tr>
<td>Secretary</td>
<td>Brian Dodd</td>
<td>1963-1964</td>
</tr>
<tr>
<td>Treasurer-Elect</td>
<td>Marvin Goldman</td>
<td>1964-1965</td>
</tr>
<tr>
<td>Executive Secretary</td>
<td>Richard J. Burk, Jr.</td>
<td>1965-1966</td>
</tr>
<tr>
<td>Treasurer-Elect</td>
<td>Melvin R. Sikov</td>
<td>1966-1967</td>
</tr>
<tr>
<td>Secretary</td>
<td>Paul G. Voillequé</td>
<td>1967-1968</td>
</tr>
<tr>
<td>Treasurer-Elect</td>
<td>William A. Mills</td>
<td>1968-1969</td>
</tr>
<tr>
<td>Secretary</td>
<td>E. Theodore Agard</td>
<td>1969-1970</td>
</tr>
<tr>
<td>Treasurer-Elect</td>
<td>Thomas B. Dorak</td>
<td>1970-1971</td>
</tr>
<tr>
<td>Secretary</td>
<td>Gloria E. Chavez</td>
<td>1971-1972</td>
</tr>
<tr>
<td>Treasurer-Elect</td>
<td>Robert N. Cherry, Jr.</td>
<td>1972-1973</td>
</tr>
<tr>
<td>Secretary</td>
<td>Keith H. Dinger</td>
<td>1973-1974</td>
</tr>
<tr>
<td>Treasurer-Elect</td>
<td>Brian Dodd</td>
<td>1974-1975</td>
</tr>
<tr>
<td>Secretary</td>
<td>Marvin Goldman</td>
<td>1975-1976</td>
</tr>
<tr>
<td>Treasurer-Elect</td>
<td>Raymond A. Guilmette</td>
<td>1976-1977</td>
</tr>
<tr>
<td>Secretary</td>
<td>Raymond H. Johnson, Jr.</td>
<td>1977-1978</td>
</tr>
<tr>
<td>Treasurer-Elect</td>
<td>Ruth E. McBurney</td>
<td>1978-1979</td>
</tr>
<tr>
<td>Secretary</td>
<td>Charles E. Roessler</td>
<td>1979-1980</td>
</tr>
<tr>
<td>Secretary</td>
<td>Richard J. Vetter</td>
<td>1981-1982</td>
</tr>
<tr>
<td>Treasurer-Elect</td>
<td>Charles A. Willis</td>
<td>1982-1983</td>
</tr>
<tr>
<td>Secretary</td>
<td>Mary E. Moore</td>
<td>1983-1984</td>
</tr>
<tr>
<td>Treasurer-Elect</td>
<td>Richard J. Burk, Jr.</td>
<td>1984-1985</td>
</tr>
<tr>
<td>Secretary</td>
<td>Karen S. Langley, Program Chair</td>
<td>1986-1987</td>
</tr>
<tr>
<td>Treasurer-Elect</td>
<td>Lucinda L. Grant, Local Arrangements Co-chair</td>
<td>1987-1988</td>
</tr>
<tr>
<td>Secretary</td>
<td>Debra McBurney, Local Arrangements Co-chair</td>
<td>1988-1989</td>
</tr>
<tr>
<td>Treasurer-Elect</td>
<td>Kenneth L. Miller, Editor-in-Chief of Health Physics</td>
<td>1989-1990</td>
</tr>
<tr>
<td>Secretary</td>
<td>Genevieve S. Roessler, Editor of HPS Newsletter</td>
<td>1990-1991</td>
</tr>
</tbody>
</table>

1996 Program Committee

Karen S. Langley, Chair
A. John Ahlquist
Dennis O. Dumas
Lynne A. Fairbent
Ken L. Groves
Kenneth R. Kase
Bruce D. Pickett
Melvin R. Sikov
Paul G. Voillequé
Local Arrangements Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cindy L. Grant</td>
<td>Co-chair</td>
</tr>
<tr>
<td>Debra McBaugh</td>
<td>Co-chair</td>
</tr>
<tr>
<td>Lynn Albin</td>
<td>Hospitality</td>
</tr>
<tr>
<td>Sandi Green</td>
<td>Hospitality</td>
</tr>
<tr>
<td>Joan Swinth</td>
<td>Hospitality</td>
</tr>
<tr>
<td>Johanna Berkey</td>
<td>Publicity</td>
</tr>
<tr>
<td>Bruce Pickett</td>
<td>Publicity</td>
</tr>
<tr>
<td>Wayne Lei</td>
<td>Ready Room</td>
</tr>
<tr>
<td>Kathy Higley</td>
<td>AV/Students</td>
</tr>
<tr>
<td>Jennifer Johnson</td>
<td>5K Run</td>
</tr>
<tr>
<td>Stan Addison</td>
<td>PEP Courses</td>
</tr>
<tr>
<td>Carl Bergsagel</td>
<td>PEP Courses</td>
</tr>
<tr>
<td>Jack Higginsbotham</td>
<td>Summer School</td>
</tr>
<tr>
<td>Jackie Ghiron</td>
<td>Summer School</td>
</tr>
<tr>
<td>Alex Nazarali</td>
<td>Floor Logistics</td>
</tr>
<tr>
<td>Janet Franco</td>
<td>Welcome Reception</td>
</tr>
<tr>
<td>Jim Self</td>
<td>Floor Logistics</td>
</tr>
<tr>
<td>Linda Woodson</td>
<td>Floor Logistics</td>
</tr>
<tr>
<td>Ed Wright</td>
<td>Floor Logistics</td>
</tr>
<tr>
<td>Tracey Patterson</td>
<td>Social Tours</td>
</tr>
<tr>
<td>Brian Pankow</td>
<td>Technical Tours</td>
</tr>
<tr>
<td>Larry Proud</td>
<td>Technical Tours</td>
</tr>
<tr>
<td>Kathy Fox-Williams</td>
<td>Night Out</td>
</tr>
<tr>
<td>Bob Gunther</td>
<td>Hotel Liaison</td>
</tr>
<tr>
<td>Norm Dyer</td>
<td>Finances</td>
</tr>
<tr>
<td>Bill Kreger</td>
<td>Registration</td>
</tr>
</tbody>
</table>

Registration Fees

<table>
<thead>
<tr>
<th>Class</th>
<th>Pre-Reg. On-Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member</td>
<td>$185</td>
</tr>
<tr>
<td>Non-Member**</td>
<td>$260</td>
</tr>
<tr>
<td>Student**</td>
<td>$40</td>
</tr>
<tr>
<td>Companion</td>
<td>$45</td>
</tr>
<tr>
<td>Exhibits only</td>
<td>$25</td>
</tr>
<tr>
<td>Exhibitor (2/Booth)</td>
<td>No Fee</td>
</tr>
</tbody>
</table>

Information

Speaker Instructions

You will be allotted a total of 12 minutes unless you have been notified otherwise.

The **Ready Room** (Room 613) will be open Monday from 7:00-11:00 am and 1:00-4:00 pm, Tuesday from 8:00-10:30 am and 1:00-4:00 pm and Wednesday from 8:00-10:30 am and 1:00-3:30 pm. Slides are to be brought to the designated ready room for loading and previewing no later than the time indicated below:

<table>
<thead>
<tr>
<th>Present Time</th>
<th>Delivery Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday PM</td>
<td>7-11 am Monday</td>
</tr>
<tr>
<td>Tuesday AM</td>
<td>1-4 pm Monday</td>
</tr>
<tr>
<td>Tuesday PM</td>
<td>8-10:30 am Tues.</td>
</tr>
<tr>
<td>Wednesday AM</td>
<td>1-4 pm Tuesday</td>
</tr>
<tr>
<td>Wednesday PM</td>
<td>8-10:30 am Wed.</td>
</tr>
<tr>
<td>Thursday AM</td>
<td>1-3:30 pm Wed.</td>
</tr>
</tbody>
</table>

Please meet with your session chairs in the meeting room where your paper will be presented 15 minutes before the beginning of the Session.

Placement Service

Placement Service listings will be posted in Rooms 504/505/506, with hours from 8:00 am to 5:00 pm, Monday through Wednesday, and 8:00 am -noon on Thursday. Interviews may be conducted in the designated areas of the Placement Center.

Business Meeting

The **Annual Business Meeting** will be convened at 5:30 pm on Wednesday, July 24, in Rooms 611/612.

Awards Luncheon

The **Awards Luncheon** will be held from 12:30 - 2:30 pm on Thursday, July 25, in the Convention Center Rooms 6A/6B. The following awards are to be presented:

- Founders Award
- Lew T. Pitchford
- Elda E. Anderson Award
- Michael G. Stabin
- Fellow Class Awards
 - William R. Casey
 - Keith H. Dinger
 - William R. Hendee
 - Bernd Kahn
 - William A. Mills
 - Bernard Shleien

Student Awards

To Be Announced

The following menu has been selected for the Awards Luncheon:

- Northwest Harvest Salad
- Herb Crusted Halibut Fillet with a Lime Beurre Blanc Sauce
- Grilled Chicken Breast served with a Gorgonzola Sun-dried Alfredo Orzo
- Fresh Seasonal Vegetables
- Seasonal Berry Shortcake

If you have any dietary restrictions, please notify someone at the HPS Registration desk.

Companion Hospitality Suite

The Hospitality Suite in the Sheraton will open at Noon-4:30 pm on Sunday, July 21 and be located in the Madrona Room. Starting Monday, the Hospitality Suite will be located in the Cirrus Room. The hours will be Monday through Wednesday, July 22-24 from 7:30 am-4:30 pm and Thursday in Room 426, July 25 from 8:00 am-Noon. Morning and afternoon refreshments will be served on a cash basis. The suite will be a place to mingle, receive and leave messages and gather information on the many attractions to enjoy in Seattle and the surrounding area. There will be a complimentary Continental Breakfast Monday morning from 7:30-8:30 AM for all registered Companions, which will feature a safety and orientation to Seattle presentation.

Future Annual Meetings

<table>
<thead>
<tr>
<th>Year</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>42nd</td>
<td>6/29-7/3, 1997</td>
<td>San Antonio</td>
</tr>
<tr>
<td>43rd</td>
<td>7/12-16, 1998</td>
<td>Minneapolis</td>
</tr>
</tbody>
</table>

Future Midyear Topical Meetings

<table>
<thead>
<tr>
<th>Year</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>30th</td>
<td>1/5-8, 1997</td>
<td>San Jose, CA</td>
</tr>
</tbody>
</table>
G. William Morgan Trust Fund

When G. William Morgan died in 1984, he bequeathed a substantial fund to the Health Physics Society. The will requires that the fund’s interest be used to have internationally known experts present papers at the Society’s meetings. Michael C. O’Riordan of the United Kingdom’s National Radiation Protection Board was the first international expert to be supported by the Society through the Morgan Fund. O’Riordan’s presentation “Radon in Albion” was part of the Indoor Radon Session at the 1989 Albuquerque meeting.

G. William Morgan was a Charter member of the Society and during the Society’s early years a very active member. Bill began his health physics career at Oak Ridge National Laboratory as part of the Manhattan Project. He later joined the Atomic Energy Commission and was instrumental in the development of the initial regulations that became part of IOCFR20. He was a great champion of education and helped establish the AEC Health Physics Fellowship Program. Bill later became very successful in the real estate business, but always retained his interest in the health physics profession. The Society’s Presidents Emeritus Committee has responsibility for the selection of the international expert who will be supported by the G. William Morgan Trust Fund.

Activities and Tours

NOTE: Tickets still available for sale can be purchased at the HPS Registration Desk.

Sunday, July 21
Whidbey Island 8:30 AM-4:15 PM
Sample Seattle 1-5 PM
Opening Reception 6-7 PM

Monday, July 22
Hospitality Ste. Mixer 7:30-8:30 AM
Panoramic Tour 9:30 AM-12:30 PM
NW Wine Tour 12:30-5:30 PM

Tuesday, July 23
5K Run/Walk 6-8:30 AM
Pioneer Square 9 AM-Noon
Snoqualmie Falls 1-5 PM
Boeing Tour 1:30-5:30 PM
Night Out 5:45-10:45 PM

Wednesday, July 24
Victoria, BC Day 8 AM-9:30 PM
Museum of Flight 1-4 PM
Boeing Tour 1:30-6 PM

Thursday, July 25
Mt. Rainer Day Trip 8 AM-6 PM
Awards Luncheon 12:30-2:30 PM

Friday, July 26
Whale Watching 6:45 AM-6:30 PM
Bangor Naval 6:15 AM-5:30 PM

Friday, July 26/Sunday, July 28
British Columbia Excursion
Depart–Friday at 1 PM
Return–Sunday at 9 PM

Important Events

Professional Enrichment Program

On Sunday, July 21 there will be a series of thirty courses offered. The courses will be offered at the Sheraton Hotel in two hour times blocks as noted, 8:00–10:00 am, 10:30 am–12:30 pm and 1:30–3:30 pm. In addition to the Sunday courses, there will be six lectures scheduled at the Convention Center on Monday, Tuesday and Wednesday from 12:15–2:15 pm. There will also be six Thursday afternoon courses from 3–5 pm.

Welcome Reception

The Welcome Reception will be held Sunday, July 21 from 6-7:30 pm in the Sheraton Ballroom.

Special Exhibit Hall Features

Monday, July 22 the exhibit hall in the Convention Center will open featuring a complimentary Lunch between Noon–1:30 pm for registered attendees. Make plans to stop by the exhibit hall after the Plenary Session.

The Exhibit Hall will once again feature upgraded Coffee Breaks. Stop by the exhibit hall each break and enjoy the extra goodies you will find. Don’t forget to thank our exhibitors for their support.

Night Out at Tillicum Village

Plan to attend the Tuesday, July 23 Night Out at Tillicum Village. This event will be a night to remember. Enjoy a narrated harbor cruise on board ship where cocktails will be available on a cash basis. Upon arrival on the Island, appetizers of clams and clam nectar will be served at the beach. Enter the great cedar longhouse for an all-you-can-eat Indian-style salmon feast followed by a Native Dance Presentation. Dress casual, bring a sweater, and enjoy the best in Northwest evening fun. Bus service will be provided to and from the Pier.

Awards Luncheon

The Awards Luncheon will be held at the Convention Center Thursday, July 25 from 12:30-2:30 pm.
Health Physics Society Committee Meetings

*(S)=Sheraton Hotel; *(W)=Washington State Convention Center*

Saturday, July 20, 1996

- **FINANCE COMMITTEE**
 - 8:30 am–Noon
 - Boardroom 414 (S)

- **RULES COMMITTEE**
 - 9 am–3 pm
 - Room 412 (S)

- **ABHP BOARD MEETING**
 - 9 am–5 pm
 - Douglas Room (S)

- **CONTINUING EDUCATION COMMITTEE**
 - Noon–6 pm
 - Madrona (S)

- **FINANCE COMMITTEE**
 - 8:30 am–Noon
 - Boardroom 414 (S)

- **RULES COMMITTEE**
 - 9 am–3 pm
 - Room 412 (S)

- **ABHP BOARD MEETING**
 - 9 am–5 pm
 - Douglas Room (S)

- **CONTINUING EDUCATION COMMITTEE**
 - Noon–6 pm
 - Madrona (S)

Sunday, July 21, 1996

- **VENUES COMMITTEE**
 - 8 am–5 pm
 - Room 426 (S)

- **ANSI N13.39**
 - 8 am–6 pm
 - Room 420 (S)

- **HPS BOARD OF DIRECTORS**
 - 8:30 am–5 pm
 - Cirrus Room (S)

- **ABHP BOARD MEETING**
 - 9 am–5 pm
 - Room 416 (S)

- **STANDARDS COMMITTEE**
 - 10 am–4 pm
 - Room 414 (S)

- **ANSI N13.33**
 - 3–5 pm
 - Room 428 (S)

- **ANSI 13.43**
 - 3–6 pm
 - Room 430 (S)

Monday, July 22, 1996

- **AAHP PROFESSIONAL DEVELOPMENT COMMITTEE**
 - 10 am–Noon
 - Room 420 (S)

- **PUBLICATIONS COMMITTEE**
 - 11 am–1:30 pm
 - Rooms 422/424 (S)

- **ACADEMIC EDUCATION COMMITTEE**
 - Noon–2 pm
 - Room 620 (W)

- **PLANCO XX**
 - 2–4 pm
 - Room 507 (W)

- **PLANCO-157**
 - 3–5 pm
 - Room 508 (W)

- **AAHP CONTINUING EDUCATION COMMITTEE**
 - 4–6 pm
 - Room 412 (S)

Tuesday, July 23, 1996

- **AAHP EXECUTIVE COMMITTEE**
 - 8 am–5 pm
 - Rooms 426 (S)

- **N13.36**
 - 9–11 am
 - Rooms 508 (W)

- **ANSI N13.12**
 - 9 am–5 pm
 - Rooms 430 (S)

Wednesday, July 24, 1996

- **SUMMER SCHOOL COMMITTEE**
 - 11 am–1:30 pm
 - Room 620 (W)

- **LIAISON COMMITTEE**
 - 11 am–1:30 pm
 - Room 508 (W)

- **ALL-PROGRAM HP FACULTY MEETING**
 - Noon–2 pm
 - Room 615 (W)

- **STATE AND FEDERAL LEGISLATION COMMITTEE**
 - Noon–2:30 pm
 - Room 507 (W)

- **NOMINATING COMMITTEE**
 - Noon–4 pm
 - Room 428 (S)

Thursday, July 25, 1996

- **LABORATORY ACCREDITATION POLICY COMMITTEE**
 - 11 am–1:30 pm
 - Room 424 (S)

- **HISTORY COMMITTEE**
 - 11 am–1:30 pm
 - Room 424 (S)

- **PUBLIC EDUCATION COMMITTEE**
 - 11 am–1:30 pm
 - Boardroom 414 (S)

- **STRATEGIC PLANNING COMMITTEE**
 - 11 am–1:30 pm
 - Room 412 (S)

- **STUDENT BRANCH COUNCIL MEETING**
 - Noon–2 pm
 - Room 508 (W)

- **MEMBERSHIP COMMITTEE**
 - Noon–2 pm
 - Room 508 (W)

- **LABORATORY ACCREDITATION ASSESSMENT COMMITTEE**
 - 1–2:30 pm
 - Room 507 (W)

- **ANSI N43-4 COMMITTEE**
 - 1–5 pm
 - Room 620 (W)

- **ANSI N13.35**
 - 2:45–5:30 pm
 - Room 422 (S)

- **HPSSC PLANCO S6**
 - 3–6 pm
 - Room 508 (W)

- **CONTINUING EDUCATION COMMITTEE**
 - 4:30–6 pm
 - Room 424 (S)

- **AWARDS COMMITTEE**
 - 7:30–9:30 am
 - Room 420 (S)

- **LOCAL ARRANGEMENTS COMMITTEE**
 - 7:30–9:30 am
 - Room 615 (W)

- **HPSSC NORM WORKING GROUP**
 - 8 am–Noon
 - Room 620 (W)

- **HPS BOARD OF DIRECTORS**
 - 8:30 am–Noon; 2:30 pm–??
 - Cirrus Room (S)

- **PROGRAM COMMITTEE**
 - 3–5 pm
 - Room 620 (W)
Health Physics Society Forty-First Annual Meeting
Final Scientific Program

If a paper is going to be presented by other than the first author, the presenter's name is underlined.

NOTE: All sessions are in the Washington State Convention Center

Monday

Continuing Education Lectures

7:15-8:15 am Room: 606/607

- **MAM-A.1** Room: 606/607 Introduction to Gamma Processing Technology. Mark A. Smith; Sterigenics International
- **MAM-A.2** Room: 606/607 A Review of Compliance Issues for Medical Licensees. Suzie Kent; Orange County Health Care Agency
- **MAM-A.3** Room: 606/607 Lower Limits of Detection. Thomas B. Borak; Colorado State University
- **MAM-A.5** Room: 606/607 Industrial Hygiene Air Sampling Methods and Applications. Peter Collapy; Carnegie Mellon University
- **MAM-A.6** Room: 602/603/604 External Beta Ray Dosimetry. Herman Cember; Northwestern University

2:00-5:15 pm Room: 610

- **MPM-A.1** Introduction to In-situ Measurement of Beta and Alpha Surface Contamination. E. W. Abelequist and E. S. Walker; Oak Ridge Institute for Science and Education and Bechtel National, Inc.
- **MPM-A.2** An Example of a Dose Assessment for the Unrestricted Release of Material with Small Amounts of Volumetric Radioactive Contamination. D. B. Otley, P. D. Rittmann and T. E. Bratvold; Wesninhouse Hanford Company

Conference Session

3:15 PM Room: 610/611

- **MPM-A.2** Summary of NAS Report on US NRC and Medical Regulation. W. R. Hendee; Medical College of Wisconsin
- **MPM-A.3** Effects of Agreement States. R. E. McBurney; Texas Department of Health
- **MPM-A.4** Effects of Other Federal Agencies/US Military. R. E. Cherry, Jr.; Department of the Army

5:15 PM Room: 610/611

- **MPM-B.1** Radiochemistry Laboratory Waste Management. C. F. Wu, S. N. Bakhitar, R. E. Siegman, R. L. Whiteley and G. L. Tatro; WIPP/Wesninhouse
- **MPM-B.2** The Effects of Surface Condition on In-situ Measurement of Beta and Alpha Surface Contamination. E. W. Abelequist and E. S. Walker; Oak Ridge Institute for Science and Education and Bechtel National, Inc.
- **MPM-B.3** An Example of a Dose Assessment for the Unrestricted Release of Material with Small Amounts of Volumetric Radioactive Contamination. D. B. Otley, P. D. Rittmann and T. E. Bratvold; Wesninhouse Hanford Company

3:30 PM Room: 610

- **MPM-B.5** Development and Implementation of a Site Decommissioning Management System for a Radioactive Waste Vitrification and RCRA Clean-Up Project at the Savannah River Site. M. S. Savidge, J. S. Howard and W. A. Varones, Jr.; GTS Duratek

3:30 PM Room: 610

Poster Presentations-Hallway 605

- **MPM-B.8** Radioactive Material Inventory Control at a Waste Characterization Facility. L. K. Yong, J. A. Chapman and F. J. Schultz; Oak Ridge National Laboratory
- **MPM-B.9** A Review of Recent Developments in Radiation Litigation. W. A. Smith; Duke Power Company

4:15 PM Room: 610/611

MPM-C.1 Compensation for Radiation Risks. P. G. Groen; University of Tennessee

4:30 PM Room: 610

MPM-C.2 Risk Control and the Minimum Significant Risk. F. A. Sellier and J. L. Alvarez; IT Corporation and Auxier & Associates

5:00 PM Room: 610

MPM-C.3 Why We Need New Approaches to Low-Dose Risk Modeling. J. L. Alvarez and F. A. Sellier; Auxier & Associates and IT Corporation

5:15 PM Room: 610

MPM-C.4 Tritium Concentrations Inside the Homes of Occupationally Exposed Workers: Dosimetric Implications. W. J. Workman, R. J. Cornett, A. Trivedi and R. M. Brown; AECL, Canada

5:15 PM Room: 610

MPM-C.5 Development and Implementation of a Site Decommissioning Management System for a Radioactive Waste Vitrification and RCRA Clean-Up Project at the Savannah River Site. M. S. Savidge, J. S. Howard and W. A. Varones, Jr.; GTS Duratek
Monday

MPM-C.7 Relative Biological Effectiveness for Induction of Cancer by Tracked Alpha Versus Beta Internal Irradiation. O. G. Raabe; University of California-Davis

MPM-C.8 Theoretical vs. Measured Risk Estimates for the External Exposure to Ionizing Radiation Pathway - A Case Study of a Major Industrial Site. S. T. Dandon; IT Corporation

MPM-C.9 Risk Assessment and Remedial Policy Evaluation Using Predictive Modeling. I. Linkov and W. R. Schell; Harvard University and University of Pittsburgh

MPM-C.10 Risk Assessment for Transportation of Radioactive Material Within the State of Idaho. C. Deng, S. G. Oberg and J. L. Downs; State of Idaho and University of Nevada

MPM-C.11 A Field Study Comparing Two Methods of Transportation Risk Assessment. M. F. Harmon, S. G. Oberg, R. R. Brey and T. F. Gesell; Idaho State University and University of Nevada

MPM-C.12 Estimated Consequences from Severe Spent Nuclear Fuel Transportation Accidents. J. J. Arnish, F. Monette, D. LePoire and B. M. Biwer; Argonne National Laboratory

Tuesday

Continuing Education Lectures

7:15-8:15 am

Rooms: 606/607

CEL-3 Skin Injuries and Dose Estimation for Selected Fluoroscopic Procedures. Edward Tipton; US Food and Drug Administration, Washington, DC

7:15-8:15 am

Rooms: 608/609

CEL-4 Topic and Speaker TBA

TAM-A: Student I

(Poster Session)

Co-Chairs: James O'Rear, University of Utah and Susan Stevenson, Amgen Corporation

NOTE: All student presenters will give a 10 minute oral summary of their presentations before poster viewing begins.

TAM-A.1 Upgrade of a Radiation Measurement Laboratory Course at the University of Florida. L. M. Thomsen, W. E. Bolch and T. H. Wagner; University of Florida

TAM-A.2 The Development of a Nuclear Medicine Course for Health Physics Students. S. E. Bonney and J. F. Katanic; Oregon State University

TAM-A.3 An Innovative Method of Teaching Gamma Ray Spectroscopy in a Radiation Detection Laboratory Course at the University of Florida. T. H. Wagner, L. M. Thomsen and W. E. Bolch; University of Florida

TAM-A.4 Cancelled

TAM-A.6 A Survey of Radiographic Technique Parameters Used in Pediatric Diagnostic Examinations. T. A. Chohan, W. E. Bolch and K. Hintenlang; University of Florida

TAM-A.7 Active Contour Segmentation of Knee Replacement Images. M. C. Tavares, J. A. Hsiao and S. A. Banks; University of Florida and Good Samaritan Medical Center

TAM-A.9 Boron Neutron Capture Therapy for Osteosarcoma: 3-D Modeling and Dosimetry. D. E. Miller; Rensselaer Polytechnic Institute

TAM-A.11 The Calculations and the Measurements of Neutron Moderation Time for Neutron Detectors at SLAC. R. K. Arora, J. C. Liu, S. Rokni and V. Vylet; San Jose State University and Stanford University

TAM-A.12 Development and Testing of a Mixed Neutron-Photon-Beta Field Thermoluminescent Dosimeter for Personnel Monitoring. J. J. Zummo and J. C. Liu, San Jose State University and Stanford Linear Accelerator Center

TAM-A.13 Accelerator Neutron Sources for BNCT: Moving Close to the Target by Eliminating Moderator. R. Kudchadker, J. F. Kunze and J. F. Harmon; University of Missouri and Idaho State University

TAM-A.14 Shielding a Radio-pharmaceutical Target Irradiation System. J. E. Dumont and G. E. Chabor; DuPont Merck Pharmaceutical Company and University of Massachusetts, Lowell

TAM-A.15 A Mathematical Description for Depth-Dose Distribution Due to Monoenergetic Electrons in Lithium Fluoride and Soft Tissue. J. B. Lemaster, K. J. Kearfott and E. Samei; University of Michigan
Tuesday

TAM-A.16 An Improved Technique for In Vivo Activity Quantification Using a Gamma Camera with 131I, G. A. Agrawal, J. E. Carey, K. J. Kearfott and R. J. Ackermann; University of Michigan and University of Michigan Hospitals

TAM-A.17 Dual Integral Glow Analysis - Evaluation of the Method in Determination of Shallow Dose and Deep Dose in Selected Beta Radiation Fields. E. Samei, K. J. Kearfott and E. C. Wagner; University of Michigan

TAM-A.19 A Comparison of the Angular Dependence of Effective Dose and Effective Dose Equivalent. M. A. Sitek, D. P. Gierga and X. G. Xu; Rensselaer Polytechnic Institute

TAM-A.21 A Study of the Angular Response of Personnel Dosimeters and Their Conceptual Design. K. Minter and X. G. Xu; Rensselaer Polytechnic Institute

8:30 AM TAM-B.1 Health Physics Experience with a Notable P-32 Ingestion. F. X. Massé and M. S. Galanek; Massachusetts Institute of Technology

9:00 AM TAM-B.2 Response to the Internal 32P Contamination of Biomedical Researchers at the National Institutes of Health. R. A. Zoon, N. E. Newman and S. W. Googins; National Institutes of Health

9:30 AM Break

10:00 AM TAM-B.3 Estimates of Intakes and Internal Doses from Ingestion of P-32 at MIT and NIH. M. G. Stabin and R. E. Toohy; Oak Ridge Institute for Science and Education

10:30 AM TAM-B.4 Findings and Conclusions of a Nuclear Regulatory Commission Investigation of an Ingestion of Phosphorus-32 at the Massachusetts Institute of Technology. J. E. Glenn; US Nuclear Regulatory Commission, Washington, DC

11:00 AM Panel Discussion

8:30-11:30 am Rooms: 608/609

TAM-C: External Dosimetry (Oral/Poster Session)
Co-Chairs: James Liu; SLAC and Shawna Eisele; LANL

Oral Presentations

8:30 AM TAM-C.1 Improved Personnel Dosimetry Using Copper-Doped LFTLDs and Neural Network Algorithms. J. R. Cassata, D. A. Schaver, G. K. Riel, G. A. Pertmer and M. E. Nelson; US Naval Academy, Naval Dosimetry Center, Naval Surface Warfare Center and University of Maryland

8:45 AM TAM-C.2 Laser-Heated Thermoluminescence Dosimetry. B. L. Justus and A. L. Huston; Naval Research Laboratory

TAM-C.3 Canceled

TAM-B: Special Session-P-32 Incidents at MIT and NIH (Oral Session)
Chair: Richard Vetter; Mayo Clinic

8:30 AM TAM-C.4 Determination of Photon Backscatter from Several Calibration Phantoms. J. C. Seibert, M. K. Murphy and R. J. Trub; Pacific Northwest National Laboratory

9:30 AM TAM-C.5 Galactic Cosmic Ray Flux Distributions in the Skin, Ocular Lens and BFO of Astronauts on Deep Space Missions. L. W. Townsend; University of Tennessee

9:45 AM TAM-C.6 Early Dose Assessment Following Severe Radiation Accidents. R. E. Goers and E. C. Halloway; Oak Ridge Institute for Science and Education

10:00 AM Break

Poster Presentations - Hallway 610

TAM-C.7 The Early Internationalization of Safety Culture: The Impact of Yugoslavia's Vinca Reactor Accident of 1958. L. M. Calkins and K. J. Kearfott; University of Michigan

TAM-C.8 Neutron, Photon and Electron Response Functions of CaF2 and LiF TLD Chips. H. H. Hsu, W. H. Casson and J. Chen; Los Alamos National Laboratory and NSF, Germany

TAM-C.9 Experimental Comparison of the Responses of CaF2 and LiF TLD Chips. H. H. Hsu, W. H. Casson, J. M. Hoffman, R. McKeever and D. G. Vasilik; Los Alamos National Laboratory

TAM-C.11 Independent Evaluation of the Temperature and Energy Dependence of a Bubble Dosimeter. R. D. Boston, B. R. Brey and T. F. Gesell; Idaho State University

TAM-C.14 Equivalent Sphere Approximations for BFO, Skin and Eye Dose Estimation in Space Radiation Protection Studies. S. G. Bier, W. L. Maxson and L. W. Townsend; University of Tennessee

TAM-C.16 Transition to a New Dosimetry System for a Small NVLAP Accredited Dosimetry Processor. W. R. Moroney, C. L. Collum, D. J. Riemer and A. K. Dhar; Mallinckrodt Medical, Inc.

TAM-C.17 Do Your Radiation Readings Give You What You Expect? J.-M. Légaret; Radioprotection J.-M. Légaret, Canada

TAM-C.18 Sensitivity of LiF TLD-100 Irradiated by Co-60 and Cs-137 Gamma Rays. K. Shortt, C. Ross and I. Janovsky; National Research Council, Canada

10:15 AM AM Break

TAM-D: Instrumentation I (Poster Session)
Co-Chairs: Ken Alvar; LANL and David Bodansky; University of Washington

TAM-D.1 A Portable, Battery-Powered, Continuous Airborne 222Rn Sampler. S. C. Scarpitta and M. Kindar; US Department of Energy, New York
Tuesday
2:30 PM - 5:00 PM Room: 6B

TPM-A: Student II (Poster Session)
Co-Chairs: Norm Sunderland; Utah State University and Kermit Paulson; University of Wisconsin

NOTE: All student presenters will give a 2 minute oral summary of their presentations before poster viewing begins.

TPM-A.1 Reduction of Chloroform to Below Regulatory Limits in Mixed Wastes Using Co-Gamma Irradiation. S. Bedderke; University of Florida

TPM-A.3 Radiological Assessment of Depleted Uranium Migration Offsite from an Ordnance Range. D. G. Ryders; Oregon State University

TPM-A.4 222Rn as an Indicator of Nonaqueous Phase Liquid Contamination in Groundwater. M. G. Cantaloube, S. Gottipati, J. F. Higginbotham, O. Hopkins, and L. Senprini; Oregon State University

TPM-A.9 A Comparison of 137Cs Activity in Localized Evergreen and Deciduous Plant Species. R. C. Rangel, M. E. McLaIn, W. W. Pitt and G. A. Schlopppe; Los Alamos National Laboratory and Texas A&M University

TPM-A.10 In Situ Gamma Spectroscopy for the Yucca Mountain Site Characterization Project. R. R. Benke, K. J. Kearsley, D. Schoep and C. Tong; University of Michigan and Science Applications International Corporation

TPM-A.12 Radiological Interferences and Chemical Matrix Effects on the Application of Radiochromatography to Environmental and Waste Samples. J. E. Roane, J. D. Leloe, T. D. DeVol and R. A. Fjeld; Clemson University and Rust Federal Services

TPM-A.13 The Effect of Plutonium Oxidation State on Sorption in Soils from the Idaho National Engineering Laboratory. S. M. Ince, R. A. Field and J. D. Leloe; Clemson University and Rust Clemson Technical Center

TPM-A.15 Effects of Engineering Controls on Radioactive Air Emissions from the Los Alamos Neutron Science Center. D. P. Fasshauer and J. W. Poston, Jr.; Los Alamos National Laboratory and Texas A&M University

TPM-B: Special Session-The Politics of Radioactive Waste Disposal
(Oral Session)
Chair: James Tripodes; UC, Irvine

TPM-B.1 A National Overview of the Politics of Low-Level Waste Disposal. R. Carretta; Organizations United for Solutions to Radioactive Waste Disposal

TPM-B.2 The Politics of Radioactive Waste Disposal Site Development. K. V. Haynes; Southeast Compact Commission (presented by H. M. Mobley)

TPM-B.3 Ward Valley Science, Law and Politics. A. Pasternak; California Radioactive Materials Management Forum

TPM-C: Medical Health Physics
(Oral/Poster Session)
Co-Chairs: Kimberlee Kearsley; University of Michigan and Jerry Thomas; US Navy

TPM-C.1 A Revised Dosimetric Model of the Adult Head and Brain. L. G. Bouchez, W. E. Bolch, D. A. Weber, H. L. Atkins and J. W. Poston, Sr.; University of Florida, University of California-Davis, State University of New York and Texas A&M

TPM-C.3 Scattered Fractions of Dose from 6, 10, 18 and 25 MV Linear Accelerator X-Rays in Radiodiotherapy Facilities. J. Shobe, J. E. Rodgers, P. L. Taylor, J. Jackson and C. E. Dick; National Institute of Standards and Technology and Georgetown University

TPM-C.4 Mazes for Medical Accelerator Treatment Rooms. P. H. McGinley and M. S. Miner; Emory University School of Medicine

TPM-C.5 Cubical S Values for Use with SPECT, PET, and Autoradiographic Imaging Data in Performing Small-Scale Dosimetry. S. V. Coates, L. G. Bouchet and W. E. Bolch; University of Florida

TPM-C.6 Radiosurgery Concerns for Patients on Renal Dialysis Receiving Radioactively-Labeled Sr-89. E. I. Parsi, J. A. Battle and K. M. Aryan; Medical College of Ohio

TPM-C.7 Estimation of Absorbed Dose Uncertainties Due to the Parameter Estimation and Inter-Patient Biokinetic Variables. B. Aydogan, R. B. Sparks, J. B. Darwish and L. F. Miller; University of Tennessee, Oak Ridge Institute for Science and Education and Dosimetry Services of Oak Ridge, Inc.

TPM-C.8 Radiation Protection for Gamma Probe-Guided Surgical Procedures. P. R. Flick and J. D. Durante; Walter Reed Army Medical Center

Tuesday

TPM-C.10 An Overview of Radiological Protection in Medical Uses of Ionizing Radiation in China. J. Z. Zheng; Ministry of Health, China

3:00-4:00 pm Room: Exhibit Hall

TPM-D: Instrumentation II (Poster Session)
Co-Chairs: Ken Alvar, LANL and David Bodansky; University of Washington
See TAM-D for listing of Papers

2:30-3:30 pm Room: Exhibit Hall

TPM-E: Computer Applications II (Poster Session)
Co-Chairs: Warren D. Reece, Texas A&M and Judson Kenoyer, Battelle PNNL
See TAM-E for listing of Papers

Wednesday

Continuing Education Lectures

7:15-8:15 AM Room: 606/607

CEL-5 The Linear No-Threshold Dose-Response Model: Both Sides of the Story. Daniel Strom; Battelle PNNL
7:15-8:15 AM Room: 608/609

CEL-6 P-32 Ingestion Incidents Which May Have Been Deliberate. John Glenn; US Nuclear Regulatory Commission, Washington, DC

8:30-11:15 am Rooms: 606/607

WAM-A: Operational Health Physics I (Oral Session)
Co-Chairs: John Laferriere, DuPont Merck Pharmaceuticals and John Nagy, Nuclear Fuel Services

8:30 AM WAM-A.1
Cosray-The Decommissioning. N. R. Sunderland; Utah State University

8:45 AM WAM-A.2
Tritium Contamination at EG&G/EM in North Las Vegas, Nevada. C. V. Sowell and L. J. Arent; US Department of Energy, Las Vegas

9:00 AM WAM-A.3
Lessons Learned from Two Very Different Large Radioactive Spills. J. K. Waggner; Oak Ridge National Laboratory

9:15 AM WAM-A.4

9:30 AM WAM-A.5
Cancelled

9:45 AM Break

10:15 AM WAM-A.6

10:30 AM WAM-A.7
University ALARA and Operational Risk Optimization. B. L. Hardy and G. M. Sandquist; University of Utah

10:45 AM WAM-A.8
A Method to Optimize the Lower Limit of Detection for a "Bag Monitor". D. A. Barron, D. C. DiCello and H. N. Trimble, III; PECO Energy Company

11:00 AM WAM-A.9
Leakage Radiation Measurements Around the Tube Housing of Industrial X-Ray Tubes: Preliminary Results. H. P. Maharaj; Radiation Protection Bureau, Canada

8:30-11:00 am Rooms: 608/609

WAM-B: Special Session-The CHP in a Court of Law-Sponsored by the AAHP (Oral Session)
Co-Chairs: Carol D. Berger, Integrated Environmental Management, Inc. and Kenneth R. Kase; SLAC

8:30 AM WAM-B.1
Pre-Litigation Strategies. P. D. Robinson; Winston & Strawn

8:30 AM WAM-B.2
The CHP as an Expert in Legal Processes. D. S. Gooden; St. Francis Hospital

9:00 AM WAM-B.3
Serving as an Expert Witness: Pre-trial and Trial Matters. J. M. McGarry, III; Winston & Strawn

9:30 AM WAM-B.4
Serving as an Expert Witness: Pre-trial and Trial Matters. R. H. Johnson, Jr.; Communication Sciences Institute

10:30 AM Question and Answer Period

11:00 AM AAHP Open Meeting
Wednesday
8:30-11:30 am Rooms: 602/603/604

WAM-C: Environmental I
(Oral Session)
Co-Chairs: Maria Gavrilis-Guinn; US DOE, Washington, DC and Laura Quintana; General Atomics

8:30 AM WAM-C.1
Advances in Dose Reconstruction at Oak Ridge. F. O. Hoffman and T. E. Widner; SENES Oak Ridge, Inc. and ChemRisk/McLaren Hart Environmental Services Inc.

8:45 AM WAM-C.2

9:00 AM WAM-C.3
Monitoring Radioactive Plumes by Airborne Gamma-Ray Spectrometry. R. L. Grasty, J. Hoygaard and J. Mutila; Exploratium, Canada, Danish Emergency Management Agency and Geological Survey of Finland

9:15 AM WAM-C.4
Statistical Methods for Determination of Background Levels for Naturally Occurring Radionuclides in Soil at a RCRA Facility. S. Guha and J. H. Taylor; International Technology Corporation

9:30 AM WAM-C.5

9:45 AM Break

10:15 AM WAM-C.6

10:30 AM WAM-C.7
Radiological Criteria for Unrestricted Use of Sites Containing NORM. D. E. Bernhardt, V. C. Rogers and K. K. Nielson; Rogers & Associates Engineering Corporation

10:45 AM WAM-C.8
Washington State Environmental Radiation Standard. J. L. Erickson, D. Wells and R. E. Jaquish; Washington State Department of Health

11:00 AM WAM-C.9

11:15 AM WAM-C.10
Radioactivity in Municipal Sludge. M. J. Brennan, J. L. Erickson and C. L. M. Albin; Washington State Department of Health

WAM-D: Works in Progress
(Poster Session)
Co-Chairs: Stan Addison; University of WA and Carl Bergsagel; Fred Hutchinson Research Inst.

WAM-D.1 Radiographic Image on Slightly Radioactive Contaminated Metal Surface. H. Jung, J. F. Kunze and W. H. Miller; University of Missouri and Idaho State University

WAM-D.2 Comparative Studies of Dosimetric Phosphors: LiF:Mg, Cu, P Single Crystals, LiF:Mg, Cu, P (MCP-N) and TL D 100. T. Niwa, T-C. Chen, F. S. Ohuchi and T. G. Stohee; The University of Washington

WAM-D.3 Development of Al_{2}O_{3}:C Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) Dosimeters. M. S. Akselrod, L. E. Colyott, S. W.S. McKeever and V. Whitney; Oklahoma State University

WAM-D.4 Patient Safety and Quality Assurance for 10 Curie IR-192 HDR Applications. P. Mahesh, B. Ward and P. Bustillo; V.A. Medical Center, Florida

WAM-D.5 A Pharmacokinetic Model for 131I Sodium Iodide in Breast Milk. A. L. Turner and S. H. Fong; Georgia Institute of Technology

WAM-D: Environmental II
(Oral Session)
Co-Chairs: Maria Gavrilis-Guinn; US DOE, Washington, DC and Laura Quintana; General Atomics

11:45 AM WAM-D.6
Dosimetric Implications of Non-Uniform Radionuclide Deposition in the Embryo/Fetus. T. E. Hui, M.R. Sikozy and S. S. Yaniv; Pacific Northwest Laboratory

12:00 PM WAM-D.7

12:15 PM WAM-D.8
Thyroid Mass in Children: A Comparison of Autopsy and Ultrasound Data. S. G. Bier and K. F. Eckerman; The University of Tennessee and Oak Ridge National Laboratory

12:30 PM WAM-D.9
GW.Risk: A Computer Code for Calculating Dose and Risk to the Public from Exposure to Contaminated Ground Water. S. R. Adams; IT & Las Vegas

12:45 PM WAM-D.10
The Effects of Graded-Z Lining and a Human Subject on Low-Energy Background in a Counting Shield used for Lung Examinations. J. L. Webb, D. J. Fingleton, S. C. Lee and H. B. Spitz; New Mexico State University and University of Cincinnati

1:00 PM WAM-D.11
Gross Alpha and Beta Determinations by Liquid Scintillation Counting on Savannah River Site Waste Materials. D. P. DiPrete, S. F. Peterson and R. A. Sigg; Westinghouse Savannah River Company

1:15 PM WAM-D.12

1:30 PM WAM-D.13
Environmental Monitoring at a Nuclear Power Plant Using a 3 x 3 Inch Sodium Iodide Gamma Ray Spectrometer. R. L. Rasty and J. Lamarre; Exploranium Ltd and Radiation Safety Systems

1:45 PM WAM-D.14
A New Method for Cleanup of Soil Contaminated by Alpha Emitters such as 238Pu. J. A. Woods and E. T. Bramlett; Thermo Nu-Tech

1:00 PM WAM-D.15

1:15 PM WAM-D.16
Gross Gamma Scanning Surveys with USTUDS in the Canyons Around a DOE Facility. M. S. Blair and B. Lawrence; CHEMRAD Tennessee Corporation (Presented by P. Flynn)

1:30 PM WAM-D.17
Dissolution of Radium from Soil Contaminated with Naturally Occurring Radioactive Materials Subjected to Accelerated Aging. C. J. Blaso, H. B. Spitz, C. W. Becker and G. Rajamatt; University of Cincinnati

1:45 PM WAM-D.18

2:00 PM WAM-D.19

2:15 PM WAM-D.20

PROFESSIONAL ENRICHMENT PROGRAM

W-1 Rooms 610/619 Introduction to Microdosimetry. Joseph C. McDonald; FNRL
W-2 Rooms 616/617 Recent Trends in Radiation Detector Development. Glenn F. Knoll; University of Michigan

W-3 Rooms 611/612 Current Approaches to Regulating Public Exposure to Radionuclides and Hazardous Chemicals. David C. Kocher; Oak Ridge National Laboratory

W-4 Rooms 608/609 Radioactive Sources in Recycled Metals: Preventing the Problem. Joel O. Lubena and James G. Yasko; Nuclear Regulatory Commission and Pennsylvania Department of Environmental Protection

W-5 Rooms 606/607 NORM in Phosphate Fertilizers and Fertilizer By-Products. Carter D. Hull; Florida State University

W-6 Rooms 602/603/604 Methods to Determine Compliance with the Requirements of the Updated ANSI N13.1 Standard (Stack Sampling). Andrew R. McFarland; Texas A&M University

2:30-5:00 pm Room: Hallway 605

WPM-A: Operational Health Physics II (Poster Session)

Co-Chairs: John Lafferty; DuPont Merck Pharmaceuticals and John Nagy; Nuclear Fuel Services

WPM-A.1 Sharing Best Practices. T. D. Gallagher, S. L. Bravvinder and L. J. Gremillion; The Boeing Company

WPM-A.2 Validation and Optimization of Nasal Swipe Analyses. R. W. Martin, R. A. Metcalf and A. A. Montoya; Los Alamos National Laboratory

WPM-A.7 Use of Metrics in an Effective ALARA Program. B. B. Bates, Jr.; Los Alamos National Laboratory

WPM-A.8 Statistical Sampling Method for Releasing Decontaminated Vehicles. J. W. Vlkk and J. A. Ware; Rust Geotech

WPM-A.10 Sources, Exposures, Intakes and Ontakes, and Irradiation: Cautious Use of Language is the Key to Successful Communication. D. J. Strom; Pacific Northwest National Laboratory

2:30-5:30 pm Rooms: 608/609

WPM-B: Regulatory/Legal (Oral Session)

Co-Chairs: Thomas D. Murphy; US NRC, Washington, DC and George W. Campbell; LLNL

Wednesday

2:30 PM WPM-B.1 Art in the Nuclear Age. J. L. Adcock; Hanford Nuclear Sculpture Works

3:00 PM WPM-B.2 Enforcing Control and Proper Disposal of Radioactive Devices: A Public Review. J. O. Lubena and R. Free; US Nuclear Regulatory Commission and Texas Department of Health

3:30 PM WPM-B.4 Radiation Protection of Radiosensitive Populations. K. L. Mossman; Arizona State University

3:45 PM WPM-B.5 Break

Wednesday

WPM-C.8 A Field Measurement Approach to the Quantification of Depleted Uranium in Soil. C. J. Olenik, G. K. Riel and M. E. Nelson; Naval Surface Warfare Center and United States Naval Academy

WPM-C.10 The Efficiency Calibration and Development of Correction Factors for an In-Situ High-Resolution Gamma Spectroscopy Well Logging System. J. R. Giles, R. R. Brey and T. F. Gesell; Idaho State University

WPM-C.12 Determination of Radionuclide Concentrations in Ground Level Air Using the ASS-500 High Volume Sampler. D. Arnold, M. Biernacka, U. Fischer, E. Frenzel, J. Jagielak, W. Kiesewetter, H. Wershofen and R. Zarucki; Central Laboratory for Radiological Protection, Poland

WPM-C.13 Investigation of Low-Volume Air Particulate Sampling Variation and Directional Effect of Sampler Head Orientation. R. E. Dunker and B. W. Graham; Idaho State University and Wilkes University

WPM-C.14 A "State” of Quality Assurance in the Environment or How to Guard the Hen House! R. A. Daniels and J. W. Schmidt; Washington State Department of Health and Westinghouse Hanford Company

WPM-C.15 Avoiding Potential Problems from Radionuclides in Municipal Wastewater. M. L. Miller, C. R. Bowman and M. G. Garcia; Roy F. Weston, Inc. and City of Albuquerque Water Utility Division

WPM-C.16 Natural Radioactivity Concentration in Different Types of Inorganic Fertilizer Imported by Saudi Arabia. I. I. Kutbi, S. Abdul-Majid and W. H. Abdulafaraj; KAAU, Saudi Arabia

WPM-C.17 Radionuclide Content of Las Vegas Wash Sediments. M. J. Rudin, A. M. Meyers and W. H. Johnson, University of Nevada, Las Vegas

WPM-C.18 Radionuclide Concentrations in Bees and Honey in the Vicinity of Los Alamos National Laboratory. P. R. Fresquez and D. R. Armstrong; Los Alamos National Laboratory

2:30-5:15 pm Rooms: 602/603/604

WPM-D: Training/Public Information
(Oral/Poster Session)

Co-Chairs: Kathy Shingleton; LLNL and Mike Knight; Pantex

Oral Presentations
2:30 PM WPM-D.1 Stakeholder Involvement and Public Outreach at Two Department of Energy Sites. R. H. Gray, Battelle Panex

2:45 PM WPM-D.2 Elements of Effective Training, "In 25 Words or Less". N. W. Couch and L. D. Hyde; ACT and Occupational Safety & Health Educational Resource Center

3:00 PM WPM-D.3 International Experience with a Multidisciplinary Table Top Exercise for Response to a PWR Accident. J. R. A. Lakey; John Lakey Associates, UK

3:15 PM Break

3:45 PM WPM-D.4 A National Conference on Bachelor of Science Degree Programs in Health Physics. L. D. Hendrick; Francis Marion University

4:00 PM WPM-D.5 UNLV/EVSC 3+2 Dual Degree Program in Health Physics. J. J. Crumby, W. H. Johnson and M. J. Rudlin; Fort Valley State College and University of Nevada, Las Vegas

4:15 PM WPM-D.6 The Radioactive Waste Management Videocoffee Training Series for an International Audience. C. Callan and J. M. Hylka; The University of New Mexico and Roy F. Weston, Inc.

4:30 PM WPM-D.7 What Positive Information is on the Wide Web about Nuclear Energy? E. N. Cramer: Assistance to Education

Poster Presentations

WPM-D.8 The Use of HPS Newsletter Cartoons to Effect Training in a Medical Center Environment. W. K. Tuttle, III; VA Medical Center, Oregon

WPM-D.9 Community Outreach - A Success Story. D. M. Halliday, M. G. Knight and G. E. Williams; Pantex Plant

5:30-6:30 pm Rooms: 611/612

HPS Annual Business Meeting

7:00-8:30 pm Metropolitan Ballroom Sheraton Hotel

WPM-E: Special Session—Aerosol Measurements
(Oral Session)

Chair: Morgan Cox; Westinghouse

WPM-E.1 Revision to ANSI N13.1 Guide to Monitoring Releases of Radioactive Substances from Stacks and Ducts of Nuclear Facilities. J. Glitnasyer; Battelle Pacific Northwest National Laboratory

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:15 AM</td>
<td>THAM-C.1</td>
</tr>
<tr>
<td>8:30 AM</td>
<td>THAM-C.9</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>THAM-C.10</td>
</tr>
<tr>
<td>9:45 AM</td>
<td>THAM-C.11</td>
</tr>
<tr>
<td>10:15 AM</td>
<td>THAM-C.12</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>THAM-C.13</td>
</tr>
<tr>
<td>11:45 AM</td>
<td>THAM-C.14</td>
</tr>
<tr>
<td>12:30 PM</td>
<td>THAM-C.15</td>
</tr>
</tbody>
</table>

Thursday

Continuing Education Lectures

7:15-8:15 am	Rooms: 606/607

8:15-8:30 am	Rooms: 608/609
CEL-8 | Quantifying the Goodwill Value of your Radiation Safety Program. Robert Emery; University of Texas

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 AM</td>
<td>THAM-A.5</td>
</tr>
<tr>
<td>9:15 AM</td>
<td>THAM-A.6</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>THAM-A.7</td>
</tr>
<tr>
<td>11:45 AM</td>
<td>THAM-A.8</td>
</tr>
<tr>
<td>12:30 PM</td>
<td>THAM-A.9</td>
</tr>
</tbody>
</table>

Thursday

10:15 AM | THAM-A.10 |
11:00 AM | THAM-A.11 |
11:45 AM | THAM-A.12 |

Thursday

THAM-C.12 In Vitro Dissolution of Strontium Titanate to Estimate Clearance Rates in the Human Lung. J. Anderson, B. Kahn, R. Rosson and T. LaBone; Georgia Institute of Technology and Westinghouse Savannah River Company

THAM-C.13 Particle Size Associated with the Surface Oxides on Low Enriched Uranium Metal Plates. S. H. Linauskas, F. Szostak and A. Trivedi; AECL, Canada

THAM-C.16 Development of a Definitive Internal Dosimetry Code. G. Miller, W. C. Inket and M. E. Schillaci; Los Alamos National Laboratory

THAM-C.17 Monte Carlo Simulation of K-40 In-Vivo Body-Count Spectra for Different Body Shapes. M. E. Schillaci and T. H. Brown; Los Alamos National Laboratory

THAM-D: Section Session—Work Management—Sponsored by the Power Reactor Section

(Oral Session)

Co-Chairs: Ben L. Granados, Jr.; Yankee Atomic Company and Regis Greenwood; Davis Besse Nuclear Power Plant

WORK MANAGEMENT

8:30 AM THAM-D.1 Swedish Approaches to Radiation Protection at Nuclear Power Stations. P. Knapp and D. W. Miller; Southern California Edison Company and Illinois Power Company

9:00 AM THAM-D.3 Outage Dose Reduction Achievements During Shorter Refueling Outages. W. O. Harris and S. Taylor; PECO

9:30 AM THAM-D.5 The International System on Occupational Exposure, ISOE 1995 Dose Trends and Results. T. Lazo and D. W. Miller; OECD Nuclear Energy Agency, France and Illinois Power Company

9:45 AM Break

OPERATIONAL TOPICS

10:15 AM THAM-D.6 Dose Rate and Spectral Photon Measurements Around a Large BWR. J. L. Lobdell and N. E. Hartel; Tennessee Valley Authority and Georgia Institute of Technology

10:30 AM THAM-D.7 Maine Yankee Steam Generator Tube Modification, From a Radiological Perspective. E. Heath and B. Granados; Maine Yankee

10:45 AM THAM-D.8 Scanning Personnel for Internal Deposition of Radioactive Material with Personnel Contamination Whole Body Friskers and Portal Monitors. J. L. Lobdell; Tennessee Valley Authority

THAM-E: Special Session—Workshop on International Studies on Biological and Health Effects of Electromagnetic Fields

(Oral Session)

Chair: Charles Meinhold; NCRP

8:30 AM Introduction to the Workshop. C. B. Meinhold; NCRP

Thursday

8:40 AM THAM-E.1 National Council on Radiation Protection and Measurements (NCRP) Program on Nonionizing Electromagnetic Fields. T. S. Tenforde; Pacific Northwest National Laboratory

9:10 AM THAM-E.2 Summary of Activities of NCRP Scientific Committee 89-4: Modulated Radiofrequency Fields. O. P. Gandhi; University of Utah

9:40 AM THAM-E.3 Summary of Activities of NCRP Scientific Committee 89-5 on Biological Effects and Exposure Criteria for Radiofrequency Fields. J. C. Lin; University of Illinois

10:15 AM Break

10:30 AM THAM-E.4 Summary of Activities of the International Commission on Non-Ionizing Radiation Protection, J. H. Bernhardt; Federal Office for Radiation Protection, Germany

11:00 AM THAM-E.5 Summary of Activities of the National Radiological Protection Board. R. H. Clarke; National Radiological Protection Board, United Kingdom

12:30-2:30 pm Rooms: 6A/B

Health Physics Society Annual Awards Luncheon

PROFESSIONAL ENRICHMENT PROGRAM

TH-1 Rooms 618/619 Pathway to a Paradigm: The Linear Nonthreshold Dose-Response Model in Historical Context. Ronald L. Kahren; Washington State University

TH-2 Rooms 616/617 A Workshop on the Do's and Don'ts of Risk Communication for the Technically Inclined. David A. Waite; CH2M Hill

TH-3 Rooms 611/612 Radiochemistry Practices and Requirements Related to Environmental Characterization and Monitoring. Gary L. Troyer; Westinghouse Hanford Co.

TH-4 Rooms 608/609 A Field Perspective for Implementing 10CFR835. Gene E. Ranke; U.S. Department of Energy

TH-5 Rooms 606/607 Environmental Remediation. Mark L. Miller; Roy F. Weston, Inc.

TH-6 Rooms 602/603/604 Limitations to Pathway Analysis. Bruce A. Napier; Battelle, Pacific Northwest Laboratories
PROFESSIONAL ENRICHMENT PROGRAM
Sunday, July 21, 1996 through Thursday, July 25, 1996

The Professional Enrichment Program (PEP) provides a continuing education opportunity for those attending the Health Physics Society Annual Meeting. The topics for the PEP are specifically chosen to cover a broad range of subjects. Some of the sessions are popular repeats from last year and the rest are completely new lectures in response to your suggestions. The two hours allotted each course ensure that the subjects can be discussed in greater depth than is possible in the shorter programs offered elsewhere in the meeting. The class size is limited to allow for interaction between the lecturer and the students.

The speakers, course titles, and the times for each presentation are listed on the following pages. On Sunday, July 21, the day before the Annual Meeting, a series of 30 courses will be offered. These courses are divided into 10 topical areas. The Sunday sessions begin early to allow for 3 sections that day. The program begins at 8:00 am and finishes at 3:30 pm. The Welcome Reception begins at 6:00 pm.

In addition to the above-mentioned sessions for Sunday, six PEP lectures are scheduled on Monday, Tuesday, Wednesday and Thursday afternoons. Routine PEP attendees should note that the times of the midweek sessions are 12:15 - 2:15 p.m. again this year, to be consistent with the revised scheduling of the Annual Meeting. There will be six Thursday afternoon PEP sessions from 3:00-5:00 pm.

Registration for each two-hour course is $40. Attendees may register for courses in one topic area or may attend courses in several topic areas. Registration will be limited to 60 attendees (except as noted) per course on a first-come, first-served basis. Those whose registrations are received before the pre-registration deadline will be sent confirmation of their PEP course registration.

In order to further the Society's commitment to the next generation of Health Physicists, students with a current ID card will be admitted free of charge to any sessions which still have space available after the waiting list has been admitted. Student admission will be on a first-come, first-served basis and will only begin 15 minutes after the start of the session to allow for completion of ticket processing.

Continuing Education Credits from the American Academy of Health Physics have been granted for the PEP.

Please Note!!

Please remember to be on time for your sessions. The lecturer will begin promptly at the scheduled time. Please allow time for check-in. The HPS reserves the right to schedule a substitute speaker or cancel a session in case the scheduled speaker is unavailable.

Attendees not present at the starting time of the session cannot be guaranteed a space, as empty spaces will be filled from the waiting list at that time. Spaces left after the waiting list has been admitted may be filled with students. If your duties at the meeting cause you to be late for your lecture (e.g., chairing a session), contact the PEP registration desk so that your name can be placed on the waiver list and your space held. We understand that there are circumstances that will prevent you from being on time, but we do not want to turn people away and have empty seats due to no-shows.

Note: Each course is two (2) hours in length and will earn four (4) continuing education credits.

Category A: Communications/Training
Category B: General
Category C: Computers in Health Physics
Category D: Radiological Evaluations
Category E: Dosimetry
Category F: Operational Health Physics
Category G: Industrial Health/Non-Ionizing
Category H: Environmental Radiation
Category I: Interactive Workshops
Category J: Medical

Sunday, July 21 8:00-10:00 am

1-A (Communications/Training)
Public Relations - How to Effectively Influence Opinion - John W. Billett (Billett & Quinn, Ltd.)

The course will provide a basic introduction to public relations. It is designed to address the interests of both the novice and the experienced practitioner.

Whether for an individual, small organization, or complex entity, the material presented will furnish attendees with the basic concepts and methodologies of public relations. Among the subjects to be discussed are establishing your goals, identifying your publics, crafting your message, choosing your communication vehicles, and evaluating your results.

The session will be conducted in an interactive seminar format.

1-B (General)
Legal Issues and Developments in Radiation Litigation - David Wiedis (Jose & Wiedis)

The course begins with a discussion of basic legal concepts which are fundamental to understanding radiation litigation. Among the topics covered are: the Price Anderson Amendment Act, how lawyers investigate a radiation case, how the case proceeds from the incident through the discovery process, preparation for trial and trial, and the role of the health physicist in the pre-trial and trial phase of a case. The course then addresses the major issues currently being litigated in this field. These include: What is the standard of care required of a utility, the role of the federal dose standards, the role of ALARA, radiation protection and the fetus, the impact of new part 20 on radiation litigation, "junk science," what constitutes compensable injury, what is adequate proof of causation, and the role of the NIH probability of causation. Practical examples from cases will include strategy developed for depositions and trial. A major focus of the course is how to avoid litigation. We will examine common mistakes that have resulted in litigation, how to avoid them in the future, record keeping strategies, and what to do in the event you are sued.

1-C (Computers in Health Physics)
Health Physics Resources on the Internet - Melissa Woo (University of Illinois at Urbana-Champaign)

This session will provide health physicists with information on the vast health physics-related resources available on the Internet. An overview of basic Internet functions and commonly used Internet jargon will be provided for attendees unfamiliar with the Internet. General information about the various methods for accessing information from the Internet will be discussed, such as Internet mailing lists, ftp sites, gopher sites, and World Wide Web pages. Locating specific information on the Internet will be covered using methods such as World Wide Web search engines and WAIS searches. Much of the session will involve real-time online demonstrations of some of the many resources available to health physicists on the Internet, with an emphasis on information on the World Wide Web.

1-D (Radiological Evaluations)
Bioassay Data Evaluation Workshop for the Estimations of Intakes, Exposures, and Doses from Internal Radiation Sources, Part I - Clayton French and Kenneth Skrable (University of Massachusetts Lowell); Thomas LaBone (Westinghouse Savannah River Company) NOTE: This is a two part course; you must register for both parts to participate.

This special 4 hour Professional Enrichment Program (PEP) is devoted to the evaluation of in vivo and in vitro bioassay data. Following a concise summary of the biokinetic models and methods used for evaluation of bioassay data, actual data from events are evaluated in terms of estimated intakes, exposures, and internal radiation doses. The NIH P-32 incident will be discussed.
1-E (Dosimetry)
Internal Dosimetry and Part 20 -
John W. Poston, Sr. (Texas A&M University)

The "new" standards for protection against radiation (10CFR20) were implemented effective January 1, 1994 by all NRC and agreement state licensees. These regulations require the addition of external and internal radiation exposure and the controlling of the total effective dose equivalent (TEDE) within a single dose equivalent limit. In addition, the approaches to internal dose assessment, using the ICRP Publication 30 techniques, have changed. For these reasons, internal dose assessment has taken on a new importance. This presentation will address the new concepts and guidance available for use in such assessments. Included in the discussion will be a series of problems designed to illustrate the use of these important documents.

1-F (Operational Health Physics)
A Review of the September 1995 Revisions to DOT/NRC to the Nuclear Materials Transportation Regulations - Al Grella (Grella Consulting, Inc.)

On September 28, 1995, the U.S. Department of Transportation (DOT) and the U.S. Nuclear Regulatory Commission (NRC) finalized rule-making changes to 49 CFR (Docket HM-159A) and 10 CFR Part 71. The stated purpose of these amendments was to achieve consistency with the international standards of the International Atomic Energy Agency’s (IAEA) 1985 Edition of Safety Series #6 (as amended 1990). Although many of the amendments were minor or editorial, several of the substantive revisions are expected to have impacts on transport of radioactive materials, particularly radwaste, in varying degree. The two major amendments include:

1. Redefinition of the "LSA" category and establishment of a new "SCO" category
2. Codification of formal radiation protection program requirements with dose limits during transportation to occupationally exposed persons and numbers of the general public.

In this course, these revisions as well as several others are discussed in detail; and probable impacts on transportation practices are covered. Effective dates for mandatory compliance are also discussed. Information from the course should be helpful to persons who are in the process of updating their procedures for nuclear transportation.

1-G (Industrial HLth/Non-Ionizing)
Fundamentals of Non-Ionizing Radiation Protection - John A. Leonowich (Battelle Pacific Northwest Laboratory)

No prior knowledge of the field is required. It is clear that the use of non-ionizing radiation (NIR) continues to cause concern to both workers and the general public. Many misconceptions have clouded the appreciation of the actual hazards associated. This course will review the fundamentals of NIR protection and provide the basis for the health physicists to pursue further study in this area. Included among the topics to be covered are: the biological effects of NIR radiation, including ELF, LF, and high-frequency (3 kHz to 300 GHz) lasers, optical and ultraviolet sources, and extremely low frequency (ELF) electromagnetic fields (0-3 kHz). 1992 marked the release of extensive revisions to both the ANSI/IEEE Radiofrequency/Microwave Standard and the ANSI Z136.1 Laser Standard. Both these revisions will be reviewed, as well as the ACGIH recommendations for magnetic fields and non-coherent optical radiation.

1-I (Interactive Workshops)
NEPA Compliance - Charles D. Massey (Sandia National Laboratories)

The National Environmental Policy Act (NEPA) has specific requirements for assessing and documenting potential environmental impacts before a federal agency makes certain decisions. This course will be designed to provide basic information on the NEPA process from a preparer's perspective. The course will cover the NEPA documentation process from initial activities to final document issuance. Primary focus will be on the preparation of Environmental Assessments (EAs). The content and format of EAs will be discussed, along with tips on what to do and how to do it in their preparation. Questions on defining alternatives, determining the affected environment, and how to estimate environmental impacts will be addressed. Experience with several recently completed NEPA documents will be drawn upon for many of the "lessons learned." Additionally, focus will be placed on public involvement aspects of the NEPA process and latest trends in incorporating environmental justice and cumulative impacts. At the conclusion of the course, a participant will have a sound basic understanding of the NEPA process and how to prepare a good NEPA document.

1-J (Medical)
Internal Dosimetry by MIRD and MIRDose: Theory and Dose Calculations - Wesley E. Bolch (University of Florida)

The safety assessment of potential new imaging agents requires the determination of their biokinetics and resulting absorbed dose distributions. The MIRD methodology has been used for a number of years to compute internal doses from radiopharmaceuticals. The software package MIRDose provides a routine to utilize biokinetic data in the computation of average absorbed doses to organs of interest. While this methodology has tended to be used in nuclear medicine, it has been widely used in radiation protection. Recent developments within the MIRD committee will be highlighted including a new head and brain dosimetry model as well as techniques for rapid and simplified calculations of the dose contours within organs imaged by SPECT, PET, or autoradiography. This course will review the MIRD methodology and will provide instruction on the use of MIRDose which is written for IBM-compatible PC's. Approximately 3/4 of the course will be devoted to formal instruction in the use of MIRDose and 1/4 devoted to applications in nuclear medicine and radiation protection. Each student will receive information that will activate learners and provide instruction and feedback.

2-A (Communications/Training)
Computer-Based and Web-Based Radiation Safety - Carolyn J. Owen (Lawrence Livermore National Laboratory)

The traditional approach to radiation safety training has been to provide a stand-up lecture and/or video on the topic and a repeat performance periodically of the same material. New approaches to meeting training requirements are needed to address the ad-
vent of flexible work hours, telecommuting, and the employee that would like a different approach to learning than the traditional lecture. Creating different refresher training classes than the initial training material is a common request of employees. Computer-based and Web-based training will be reviewed, along with their advantages and disadvantages. Demonstrations of computer-based training will be provided and Web-based training addresses shared. At the end of the course, a participant shall be well acquainted with alternative radiation safety training options on the computer and Web and have the necessary information for implementing similar approaches at their own facilities.

2-B (General) Biological Safety for the Health Physicist - Robert Emery (University of Texas)

Radiation safety professionals encounter biological hazards in a variety of workplace settings, including health care institutions, biomedical research facilities, bioassay programs, waste programs, and emergency response. This course is designed to provide health physicists with the practical information necessary to anticipate, recognize, evaluate, and control the various biological hazards present in these environments. An overview of the regulations and guidance documents associated with the discipline of biological safety is also provided, along with an extensive listing of useful references.

2-C (Computers in Health Physics) Putting Health Physics Information on the Internet - Melissa Woo (University of Illinois at Urbana-Champaign); Mark Selikson (University of Pennsylvania)

This session is intended for health physics professionals who are interested in using the Internet to distribute health physics information to peers, users, and/or the general public. The various methods of providing information on the Internet will be covered with an emphasis on the use of the World Wide Web. The session will be presented in two parts. The first portion will be an overview of technical aspects and general hardware/software issues as well as an introduction to the concepts needed for those wishing to utilize the Internet to deliver information. The second portion of the session will be a case study on the University of Pennsylvania's ongoing effort to set up resources to provide information using the Internet. Examples of the information management system will be given for specific radiation safety tasks including manuals, remote RAM ordering, worker registration, worker training and research authorizations. Design, development, debugging, system conversion and quality assurance issues will be discussed.

Some knowledge of computers and the Internet is desirable.

2-D (Radiological Evaluations) Bioassay Data Evaluation Workshop for the Estimations of Intakes, Exposures, and Doses from Internal Radiation Sources, Part II - Clayton French and Kenneth Skrabale (University of Massachusetts Lowell); Thomas LaBone (Westinghouse Savannah River Company)

See PEP 1-D for description. This is a continuation of a 2 part course.

2-E (Dosimetry) Beta Dosimetry and Personnel Contamination Monitoring - Gloria T. Mei (Oak Ridge National Laboratory)

Beta particles can sometimes contribute significantly to the skin dose in personnel contamination. However, personnel monitoring for beta contamination has played a minor role in radiation protection mainly due to the inherent more difficult measurement techniques it requires in comparison with photon monitoring. Field measurement of beta contamination is complicated by difficulties in instrument calibrations, the presence of low-energy photons, and the lack of adequate training and procedures. The course will review the basic principles of beta dosimetry and consider the challenges facing health physicists who provide beta dosimetry and/or contamination monitoring in the radiological workplace. Regulations and guidelines on high-intensity beta surface contamination limits will be discussed. The technical basis for the method of manual friction will be presented. On the practical side, the estimation of beta skin dose with a portable instrument will be illustrated. The selection of the portable instrument's output to an equivalent skin contamination level and the dose distribution will be discussed.

An evaluation of selected portable instruments for low-energy beta contamination monitoring based on detector response, detection sensitivities, and general performance characteristics will be given.

10CFR20.1101(c) requires periodic (at least annual) reviews of radiation protection program content and implementation. This course is designed to assist both broad based licensees and smaller radioactive material licensees to develop a review process tailored to each licensee's specific program content. Included will be recommended documentation methods. Various types of radioactive material licensees will be cited as examples during the course and reviewed review processes structured for each cited example to assist students with application of techniques presented to their own specific license conditions.

2-G (Industrial Hth./Non-Ionizing) Industrial Hygiene - Peter Collopy (Carnegie Mellon University)

Industrial Hygiene is the practice of anticipating, recognition, evaluation, and control of hazardous agents in the work place. This course builds upon basic introductory industrial hygiene courses and training by introducing more specific methods for the evaluation and control of non-radiological hazardous agents in the workplace. Students taking this course should have a fundamental understanding of OSHA regulations and basic industrial hygiene principles such as application of PELs and TLVs. A review of new standards and regulations will be presented in this course. Evaluation of hazardous agents through modeling and measurement techniques will be introduced with specific workplace examples. Control methods for various exposure scenarios will also be discussed. This course is intended for personnel currently performing some non-radiological industrial hygiene activities.

2-H (Environmental Radiation) 10CFR834 and its Implementation at DOE Facilities - Rex J. Borders (U.S. Department of Energy)

The Department of Energy has been continuing to develop 10CFR834 - Radiation Protection of the Public and Environment - since the notice of proposed rule making. This rule will represent DOE's primary standard for the protection of the public and the environment from ionizing radiation. All DOE contractors will be required to develop Environmental Radiological Protection Programs (ERPP) which comply with this rule. In addition, they must develop program documentation to demonstrate compliance and correct identified shortfalls. To assist with this process, DOE has created the Environmental Radiation Control Coordinating Committee (ERCC) to guide the implementation of this rule at all DOE facilities and to develop further technical standards.

The course will focus on the content of 10CFR834 and is appropriate for all personnel interested in Environmental Radiation. The secondary purpose of the course will review the current status of the DOE activities underway to implement the rule at its facilities.

2-1 (Interactive Workshops) Effective Strategies for Communicating Risk - Jerrold T. Bushberg (University of California, Davis)

This presentation will focus on risk communication strategies in order to enable
professionals to more effectively communicate radiation risks in public settings. The seminar will discuss the fundamentals of effective communication, common perceptions and misconceptions regarding radiation health risks, understanding the factors that engender public "outrage," and managing those issues. The first part of the seminar will begin by reviewing the fundamentals of effective communication and understanding public perceptions as described above. The second part will be interactive, utilizing a mock public hearing to practice and sharpen your communication skills. Participants will have the opportunity to work in teams during mock public hearings both as proponents and opponents of a proposed controversial project. At the conclusion of this seminar, participants should have a better understanding of effective communication strategies and the nature of public controversy and its management.

2-J (Medical) Internal Dosimetry by MIRD and MRIDOSE: Biokinetic Modeling - Michael G. Stabin (Radiation Internal Dose Information Center)

Often the most difficult parameter to obtain for solution of the MIRD internal radiation dose equation is the residence time (or accumulated activity), which is the area under the time-activity curve for an organ, tissue, the whole body, etc. In an internal dosimetry problem, the kinetics of all source regions must be characterized in order to calculate all contributions to the radiation dose in various target regions. After the kinetics are well characterized, the areas under the time-activity curves for the source regions must be estimated. This program will demonstrate through description and example several approaches to the characterization of source region kinetics and integration of the time activity curves. The use of direct integration, least squares analysis, and compartmental modeling techniques will be discussed; and results using different methods will be compared. Theoretical aspects of the different approaches will be described as time permits. Inclusion of the results of biokinetic modeling into the MIRD (and other) calculational systems will be explained and demonstrated.

3-A (Communications/Training) Performance Based Objectives - Ellen Hochheiser (Westinghouse Hanford Company)

The objective of this course is to have health physicists create performance based objectives. The acceptance criteria will be that at least 4 out of 5 objectives will meet the standard as presented in class and in the handouts.

Radiation protection professionals are frequently required to present training to individuals who have a wide variety of education, abilities and skills. Performance based objectives are an important tool to simplify the specific requirements of each task and set a standard by which the objective is met. This seminar will introduce you to the techniques of creating specific and general performance based objectives including acceptance criteria. This course will include the use of performance based objectives as an aid in meeting departmental and company goals. Attendees will actively participate in the session by meeting the listed objective.

3-B (General) Practical Applications of Internal Dosimetry Calculations - Eugene H. Carbaugh (Pacific Northwest National Laboratory)

Assessment of intake and internal dose often requires the health physicist to exercise a substantial amount of professional judgment, as well as knowledgeable use of computer codes or hand calculations. While it would be nice to say that internal dosimetry is a precise science, the reality is that many assumptions tied to an assessment are taken for granted. At one extreme is the complete use of default assumptions; at the other is the attempt to specifically tailor a detailed assessment to a unique individual. This course, presented with humor in a down-to-earth style, will discuss nine types of calculational adjustments and provide practical insights into dealing with some real-world bioassay and internal dose puzzles.

3-C (Computers in Health Physics) The Use of Desktop Software in Operational Health Physics Programs - Glenn M. Sturchio, (Merck Research Laboratories)

This course will examine the use of commercially available desktop software applications for increasing the efficiency of operational health physics programs. "Lessons learned" will be discussed to help attendees steer clear of potential pitfalls, as well as facilitate the introduction of these ideas within their organizations. Real world examples using standard business software will be presented, such as: the development of a comprehensive health physics database to track personnel, authorizations, laboratories, inventory, and instrumentation; creation of a radiation protection audit report using a document template, autotext entries, and mail merge; documentation of a laboratory decommissioning survey using a document template and linking it to a spreadsheet for data analysis; and analysis of bioassay measurements and tracking of cumulative dose equivalents in a spreadsheet. Additionally, the use of specialty software (e.g., VARSKIN, etc.) in the performance of operational health physics tasks will be presented.

3-D (Radiological Evaluations) Medical Management of Radiation Accidents - Jerrold T. Bushberg (University of California, Davis)

Medical response and management of radiological accidents begins with education of medical and ancillary health care personnel in the fundamentals of radiation exposure and its biological effects. Additional training and hands-on experience in radiation protection principles are necessary to minimize patient and personnel radiation exposure and contamination. This course will present the essential elements necessary to train medical personnel regarding priorities for medical management of these patients and how to recognize and evaluate different types of radiation injuries. Information is also presented to help educate ancillary health care workers on how to set up and use radiation monitoring and decontamination equipment and facilities. This course provides an overview of acute radiation injury and the principles which are essential to the appropriate medical management of radiation accident victims.

3-E (Dosimetry) Practical Internal Dosimetry - Richard Toovey (ORISE)

This course will cover methods of relating bioassay and air monitoring data to internal doses. The ICRP 26/30 methodology, currently the basis for both DOE and NRC regulations, will be discussed in detail. The changes published in ICRP publications 60 and 65 will also be covered.

The use of intake retention fractions (IRF's) to convert bioassay measurements to intake estimates, and the use of dose conversion factors (DCF's) to convert intake estimates to committed doses will be explained. Good practices for record-keeping, reporting, and quality assurance will be highlighted. Examples and problems taken from incidents at fuel cycle facilities, universities, and the ABHP certification exam will be used to demonstrate application of the methods.

3-F (Operational Health Physics) Recent Trends in Radiation Detector Development - Glenn F. Knoll (University of Michigan)

Recent developments in methods for the detection and spectroscopy of ionizing radiation will be reviewed, with emphasis on those that hold promise for improving measurement capabilities over the next decade. Topics will include new scintillators, gas detectors, and other devices under development. Applications will also be shown of novel gas-filled detectors, liquid and plastic scintillators, position-sensitive detectors, and digital pulse processing techniques.

3-G (Industrial Health/Non-Ionizing) Introduction to Extremely Low
Frequency Electromagnetic Fields
(0-3 kHz) - John A. Leonowich (Batelle Pacific Northwest Laboratory)

This course will introduce the controversial topic of extremely low frequency electromagnetic fields (ELF-EMF's). These fields have been linked to a number of health effects, including cancer. The course will provide a non-technical review of the basic physics of ELF electric and magnetic fields, as well as explore the potential health effects of these EMF's. In particular, the established biological effects of magnetophosphorescent induction, reproductive effects, and melatonin suppression will be reviewed. Additionally, cancer epidemiological research will be discussed, with the aim of pointing out some of the strengths and weaknesses of current studies. Both public and occupational exposure studies will be explored. Current exposure criteria recommended by the American Conference of Governmental Industrial Hygienists (ACGIH), as well as the International Commission for Non-Ionizing Radiation Protection (ICNIRP), will be reviewed. The course will also familiarize the student with some of the instrumentation currently used to perform hazard assessments of ELF-EMF's. At the end of the course, the student should be able to understand the risks associated with these fields, as well as to be able to intelligently explain these risks to the concerned layman. The course has no prerequisite. The PEP course Introduction to Non-Ionizing Radiation Protection, M-1, is recommended.

3-I (Interactive Workshops)
Electronic Personal Dosimeters (EPD's): Fundamentals and Applications - Paul L. Ziener (Purdue University)

Electronic personal dosimeters are state-of-the-art dosimeters that make use of the latest micro-circuitry and modern battery technology. EPD's typically detect radiation by means of multiple diode detectors that are sensitive to different types and energies of radiation. The devices are capable of determining total dose equivalent and dose equivalent rates for both superficial (shallow) and penetrating doses. Visual and audible alarm capabilities for specified doses and dose rates are also provided.

The course will include a discussion of the fundamental operation and characteristics of EPD's, their capabilities and limitations, and typical applications. The calibration of EPD's in accordance with the recommendations of the recent NCRP Report 122 on estimating effective dose to workers will also be reviewed. A selection of commercially available EPD's will be available for some hands-on familiarization with the devices.

M-1 Introduction to Gamma Processing Technology - Mark A. Smith (SteriGenics International)

Gamma processing involves using high energy gamma radiation to treat materials. The largest market for this service is medical device manufacturing, where radiation from sealed sources, typically cobalt-60, is used to sterilize the product before it is distributed for public use. Irradiation of food to extend shelf life and inactive microorganisms is a widely-publicized application. Other applications of gamma processing include cross-linking polymers for resin hardening, effecting color changes in gem stones, fungal inhibition in bee hives, male insect sterilization for pest control, and others. This session will describe several applications for gamma processing and explain how material is managed to achieve the desired effect. The discussions will include a brief review of the history of gamma processing; the basic science of radiation effects on materials and the typical treatment doses for the various desired effects; dosimetry systems that operate in the multiple kilogray (or megarad) range; categories of irradiators and the respective safety requirements; designs of the most common types of irradiation facilities, including safety systems; and a short survey of the history of some operating problems at irradiators. Competing or complementary technologies, such as electron-beam irradiation and sterilization using ethylene oxide gas will be mentioned for comparison purposes.

M-2 A Review of Compliance Issues for Medical Licensees - Suzie Kent (Orange County Health Care Agency)

This course reviews the regulatory requirements for medical licensees in 10CFR35 and other agreement states. Topics which will be addressed include the requirements for radiation safety programs, survey and measurement protocols, personnel dosimetry and bioassay, use of sealed sources, and management of misadministrations. The most frequent compliance problems are discussed, as well as some unusual circumstances related to medical use of isotopes. Examples of unusual concerns include the disposition of corpses containing radioactive isotopes and contamination at morgues and crematoria.

In recent years, attention has turned to the way medical use of radioisotopes is regulated in the US. Congressional attention was focused on a fatality from the misuse of a therapy source left in a patient who subsequently died. Time will be allotted for discussion of where we are headed in the regulation of medical use of isotopes.

M-3 Lower Limits of Detection - Thomas B. Borak (Colorado State University)

Judgments on whether or not a sample contains contamination in excess of background must often be based on the stochastic nature of radioactive decay and sample processing. In many instances, formulas can be applied to assess a "lower limit of detection" or...
The sampling of airborne hazardous agents involves a wide spectrum of collection techniques, equipment, and analytical methods. This course will provide a survey review of those techniques and methods. Use and calibration of air sampling pumps for particulate and chemical airborne materials will be demonstrated. The application of various sampling media such as impingers, sorbents, and filter media will be explained. The use of real-time field monitors and passive monitoring devices will be introduced and their detection capabilities and limitations outlined. Sources of information on air sampling and analytical protocols will be discussed including representative examples. Finally, some statistical methods for evaluating air sample results and their relevance to action levels and regulatory exposure limits will be introduced.

M-6 External Beta Ray Dosimetry - Herman Cember (Northwestern University)

This course will begin with a review of the physics of beta decay and the interaction of beta radiation with matter. The physics of beta radiation will then be combined with the basic principles of radiation dosimetry to calculate the external radiation dose from contaminated surfaces, from skin contamination, and from submersion in a cloud of a beta-emitting gaseous radionuclide.

T-1 Internal Dosimetry and Part 20 - John W. Poston, Sr. (Texas A&M University)

See PEP 1-E for description.

Many physicians are unfamiliar with the quantitative and qualitative effects of ionizing radiation and consultations to health physicists indicate that exposed women have received erroneous information. In the field of ionizing radiation health physicists have a broader understanding of the biological effects and the quantitative maximum risks than for any other environmental hazard. Animal and human data support the conclusion that there is a threshold dose for the production of the congenital malformations, namely, that no increases in the incidence of gross congenital malformations, intrauterine growth retardation, or abortion will occur below specific exposures. Medically indicated diagnostic roentgenograms are appropriate for pregnant women and there is no medical justification for terminating a pregnancy in women exposed to 5 rem (0.05 Sv) or less because of radiation exposure. Counseling women of reproductive age should be based on sound information about the risks of radiation exposure.

T-3 Conducting the MQSA/ACR Mammographic Unit Physicists Survey: A Practical Approach (Hopefully) - Charles C. Chamberlain (S.U.N.Y. Health Science Center)

The Medical Health Physicist has an essential role in assuring that mammographic images contain the maximum diagnostic information possible while delivering an acceptable patient dose. This assurance is provided by conducting certain tests mandated by accrediting boards or agencies. We will discuss conducting the ten physicist tests as mandated by the principal accrediting body, the American College of Radiology (ACR). Proper calibration and use of test equipment will be emphasized. In addition, assessment of image viewing conditions, film processing, acceptance testing, and assisting the mammographic technologists in her/his required testing will be covered. Contributions from the knowledge and experience of the attendees will be encouraged. Practical tips on completion of the tests will also be presented as will available sources of testing information. Since the amount of material to cover is large, some topics will be addressed in less detail than others.

T-4 Technical Writing: How to Get Your Work Published - Tamara Berg (Winona State University)

This course will give a general overview of technical writing strategies, as well as detailed advice for individuals interested in publishing their work in Health Physics Journal. Health Physics publishes manuscripts in the theoretical or applied fields of ionizing and nonionizing radiation protection, and the goal of this course will be to provide current and prospective authors with some guidance on how to prepare a manuscript for publication in Health Physics. While much of the information will be directly related to Health Physics style requirements, most of it can be applied to the writing of any technical document. Manuscript classification, submission requirements, and manuscript preparation will be covered in detail.

T-5 Tips and Tricks for Surveys at Levels Near Background - Carl V. Gogolak and Kevin M. Miller, (U.S. DOE, Environmental Measurements Laboratory)

For some radiation surveys, especially those to determine final status before site decommissioning, it may be necessary to detect activity concentrations that are a small fraction of natural background. Gross counting techniques may be inadequate or inefficient for such surveys. In this course, some of the considerations important in choosing a measurement method in those circumstances will be discussed.

The Data Quality Objectives (DQO) process can be used to define survey goals so that the most appropriate data are taken for the decision that must be made. This involves an understanding of both the variability of background at a site, and the capabilities of different measurement methods. In designing a survey, consideration should be given to whether small areas of elevated activity, as well as the overall average concentration, are important.

Alternative radionuclide specific methods, especially in situ gamma spectrom-

"minimum detectable activity" for a certain methodology. This lecture will review the underlying assumptions involved in the derivation of several popular formulas. Information will be presented to indicate how the results are affected when the assumptions in the derivation are not satisfied. Examples of alternative computational methods will be presented and applied to real data. The discussions will focus on the following two questions:
1. At what level can you conclude that there is excess contamination in a given sample?
2. How much excess contamination is required in order to routinely identify its presence in samples?
Within an understanding of the calibration methodology needed to detect both small areas of elevated appear in background and when it does not.

T-6 Revision to ANSI N13.1 Guide to Monitoring Radioactive Substances from Stacks and Ducts Facilities - John A. Gissmeyer (Pacific Northwest Nuclear Facilities is currently being revised working group under the auspices of the Health Physics Society Standards Committee. The main differences between the original and the revised standards are a narrowed scope and the verification of the performance criteria. The new scope is focused on air sampling from stacks or ducts and the new title is "Guide to Monitoring Releases of Radioactive Substances from Stacks and Ducts of Nuclear Facilities." The approach taken in the revision is essentially based on meeting performance criteria as opposed to following design prescriptions as was done in the past. This standard presents a new approach to representative sampling. The goal of achieving a representative sample is accomplished by requiring that samples are extracted from air streams meeting rigorous criteria for being well mixed for potential airborne contaminants. This standard sets forth guidelines and performance criteria for the use of air sampling nozzles, transport lines, sample collection and monitoring devices, and gas flow measuring methods in obtaining valid measurements of airborne radioactive materials in ducts or stacks.

W-1 Introduction to Microdosimetry - Joseph C. McDonald (PNL)

Microdosimetry is the study of radiation transport and energy deposition on a distance scale of micrometers and smaller. Investigations seek to understand the different chemical and biological effects of radiation in terms of the track structures of different kinds of radiation. The course deals with radiation transport and its simulation by Monte Carlo procedures, track structure and radical production in liquid water, and modeling of the chemical and biological effects of ionizing radiation. The microdosimetric concepts and quantities defined by the International Commission on Radiation Units and Measurements and in common use are covered.

W-2 Recent Trends in Radiation Detector Development - Glenn F. Knoll (University of Michigan)

See PEP 3-F for description.

W-3 Current Approaches to Regulating Public Exposure to Radionuclides and Hazardous Chemicals - David C. Kocher (Oak Ridge National Laboratory)

Under current law and regulations, two different approaches are used to limit exposures of the public to hazardous substances in the environment. The different approaches in risk management apply to (1) radiothoranium only as regulated under the Atomic Energy Act and (2) hazardous chemicals or radiothoraniates as regulated under any other laws (e.g., Safe Drinking Water Act, Clean Air Act, and CERCLA). This course discusses the two different approaches to risk management, the resulting inconsistencies in lifetime cancer risks that are regarded as "unacceptably," and the potentially adverse impacts of current regulatory approach for chemical carcinogens on the traditional approach to regulating radiation exposures in the public. The course then discusses how the apparent inconsistencies between the two regulatory approaches can be reconciled based on recognition of (1) the fundamental difference between the use of exposure limits for radionuclides, but risk goals for hazardous chemicals, (2) the different meaning of "acceptable" and "unacceptable" in the two approaches, and (3) the primary importance of the ALARA principle in risk management decisions using either approach. Based on these concepts, a unified regulatory framework which is consistent with all regulations and guidelines for limiting risks to the public from routine and accidental exposure to radionuclide and hazardous chemicals is developed.

W-4 Radioactive Sources in Recycled Metal: Preventing the Problem - Joel O. Lubenau (NRC) and James G. Yusko (Pennsylvania Department of Environmental Protection)

Radioactive sources mixed with metal scrap have become a major problem for the metal recycling industry. Metals that have been affected include ferrous, aluminum, copper, zinc, vanadium, and gold. Radioactive sources mixed with metal scrap have resulted in radiation injuries to unknowing workers and the public. Contamination of steel mills that have inadvertently smelted radiation sources has resulted in financial losses of as much as $23 million. This lecture will review the problems caused by radioactive materials entering the recycled metal stream, the protective measures being taken by the recycling metal stream, the protective measures being taken by the recycling industry, possible regulatory initiatives being explored jointly by the NRC and the Agreement States, and, most importantly, steps that can be taken by health physicists who, in their capacities of radiation safety officers, consultants, or licensees, can help prevent the entry of licensed radioactive sources into recycled metal.

W-5 NORM in Phosphate Fertilizers and Fertilizer By-Products - Carter D. Hull (Florida State University)

Inorganic phosphate fertilizer and the by-products of fertilizer production contain significant quantities of Naturally Occurring Radioactive Material (NORM). These phosphate fertilizers are usually a major constituent of high yield fertilizers, tens of millions of tons of which are applied annually to cultivated regions in North America. Nearly 1.2 billion tons of NORM-bearing solid by-products and billions of liters of solutions used in fertilizer production are stored throughout North America. This course focuses on the source, fractionation paths, redistribution, specific activities, and facts of NORM in phosphate fertilizers and fertilizer by-products. The locations of phosphate fertilizer production sites in North America and approximate quantities of NORM stored at these sites in solid and liquid by-products will be summarized. Case studies will be presented of phosphate fertilizer production facilities in Florida, the location of the great majority of the phosphate industry in North America.
the free stream to the collector or analyzer. Software for demonstrating this attribute will be distributed to attendees. Flow monitoring may be needed in some applications, and approaches to satisfying this requirement will be discussed. Quality assurance aspects are emphasized in the updated standard, and the QA/QC elements will be considered.

Thursday, July 25, 3:00 - 5:00 pm

TH-1

Pathway to a Paradigm: The Linear Nonthreshold Dose-Response Model in Historical Context - Ronald L. Kathren (Washington State University)

This course traces the evolution of the linear nonthreshold dose-response model and its acceptance as a paradigm in radiation protection practice and risk analysis beginning with the very earliest observations of radiation effects in humans up to the present time. The pathway to this paradigm begins, of course, with the discovery of x-rays and radioactivity in 1895/1896. Deterministic effects such as skin burns and even deep tissue trauma were associated with excessive exposure to x-rays shortly after the discovery; and carcinogenicity was observed as early as 1902. For three decades, these limits were based on the concept of a tolerance dose which, if not exceeded, would result in no demonstrable harm to the individual and implicitly assumed a threshold dose below which radiation effects would be absent. After World War II, largely because of genetic concerns related to atmospheric weapons testing, radiation protection dose limits were established in terms of a risk-based maximum permissible dose which clearly implied a threshold.

After World War II, largely because of genetic concerns related to atmospheric weapons testing, radiation protection dose limits were expressed in terms of a risk-based maximum permissible dose which clearly implied a threshold. By the mid 1970's the LNT Model began to assume the status of a paradigm, or even a fundamental axiom of protection, a process which was virtually complete a few years later. But as the first century following the discovery of x-rays and radioactivity drew to a close, a serious and often contentious debate has developed within the health physics community regarding the validity and general applicability of the linear nonthreshold for radiation protection, and threatening to change the previously accorded paradigm status of the linear nonthreshold hypothesis as the basis for protection standards.

TH-2

A Workshop on the Do's and Don'ts of Risk Communication for the Technically Inclined - David A. Waite (CH2M Hill)

The objectives of this workshop are to (1) examine our personal and professional goals for risk communication, (2) compare our goals with others to whom we try to communicate risk information, and (3) understand the most effective risk communication techniques, considering the different goals. These differences are examined in terms of motivation, based on generally observed characteristics and behaviors, often derived from backgrounds and training. Salient points of these characteristics will be documented through the use of recent case studies. Recognizing that accommodating the differences among key groups involved in risk communication will require some time and a process, the course workshop will conclude with a discussion of a possible strategy for moving from the present state of risk communication disarray to a status more attractive to us technically inclined.

TH-3

Radiochemistry Practices and Requirements Related to Environmental Characterization and Monitoring - Gary L. Troyer (Westinghouse Hanford Co.,)

In addition to survey instruments and dose meters, radiation protection in both the workplace and environment relies on radiochemistry techniques to sort out and quantify source term nuclides of interest. These techniques may be applied to low level environmental and bioassay samples as well as high activity nuclear process materials. Traditional bioassay sample analyses are well developed due to reasonable uniformity of matrix. However, environmental samples may have a large range of chemical challenges which must be considered in the selection of an appropriate analytical method. In some situations, high radiation level samples are also encountered such as those found in site or facility characterization in preparation for decontamination and decommissioning. In addition, regulatory agencies are establishing criteria and guidance on laboratory performance and reporting protocols.

This PEP course will survey the generally accepted techniques, correlate practice with target needs, identify limitations and discuss current issues. The topics of sample chain of custody, data verification and validation, data reporting standards, and new guidance documents will be presented. The student will obtain general information on a broad range of radiochemistry methods, challenges, and trends.

TH-4

A Field Perspective for Implementing 10CFR835 - Gene E. Runkle (U.S. Department of Energy)

The U.S. Department of Energy (DOE) issued 10 CFR 835 “Occupational Radiation Protection” in December 1993 with full implementation required by January 1, 1995. This rule contains the general standards for the radiation protection programs for the DOE complex. The DOE Radiological Control Manual, that contains prescriptive methods for implementing radiological control requirements such as radiological posting, contamination control, and training, was recently changed from a mandatory Manual to a guidance document. Some DOE sites use direct references to their site-specific RadCon Manuals to demonstrate compliance with the 10 CFR 835 requirements. The DOE sites have implemented 10 CFR 835, obtained an exemption per the 10 CFR 830 Subpart E process or self-reported non-compliance.

This session will discuss the 10 CFR 835 requirements and associated documents; the practical implementing processes; cost-saving methods, exemption process; and the overall lessons learned. Other field perspectives will include the proposed revision to 10 CFR 835, non-compliance tracking and enforcement, DOE Notice 441.1 and the application of Necessary and Sufficient to Rad Protection.

TH-5

Environmental Remediation - Mark L. Miller (Roy F. Weston, Inc.)

This course will introduce the basic components of successful remediation programs at radioactive and hazardous waste sites. Topics will cover regulatory compliance, site characterization, removal techniques, waste management, decontamination and release of materials for unrestricted use, health and safety, and quality assurance/quality control program. Several case studies will be presented; discussions will focus on problems routinely encountered in the field and how these might be mitigated.

TH-6

Limitations to Pathway Analysis - Bruce A. Napier (Battelle, Pacific Northwest Laboratories)

The current process for evaluating environmental impacts and/or individual doses and risks from radionuclides in the environment is centered on pathway analysis. This course will outline the current approaches to pathway analysis for both retrospective and prospective releases, including the general nature of required inputs. The topics of model uncertainty/sensitivity analysis and model reliability and validation will be introduced with specific examples. These topics lead to the idea of limitations to what can be reasonably expected from pathway analysis. The new popularity of risk assessment as a means for allocating resources must be tempered with the realization that the answers provided generally reflect the questions asked, and that public concerns frequently differ from “technical” concerns. The evolving mechanisms for inclusion of public concerns will be discussed, along with the current inability to effectively evaluate issues such as social justice and environmental impacts on cultural resources. This course should be valuable to people working in the areas of safety analysis, NEPA, remediation, and dose reconstruction.
Health Physics Society 1996 Exhibitors

1997 ANNUAL Booth 502
MEETING—SAN ANTONIO, TX
1997 MIDYEAR Booth 431
MEETING—SAN JOSE, CA
1997 INTL Booth 103
CONFERENCE ON RADIATION
DOSIMETRY & SAFETY
Information/material for the 1997 International
Conference on Radiation Dosimetry & Safety
(to be held in Taipei, April 1997; co-sponsored
by IHP and ANS).

3M OCCUPATIONAL Booth 234
HEALTH & ENVIRONMENTAL
SAFETY
A full line of air purifying respirators, positive
pressure respirators, air monitoring devices, hearing products, and sorbents for spill
cleanup.

3M Booth 232
3M Empore™ Rad Disks - A combination of 3M Empore Membrane technology
and element selective particles for separation and
counting of radiochemical samples.

AMERICAN Booth 434
ACADEMY OF HEALTH PHYSICS

ADCO SERVICES INC Booth 429
LLRW Disposal, Decay in Storage, Source
and NORM, Decontamination and Decommissioning.

ALL SYSTEMS INC. Booths 320, 322
The Gamma Cam is a prototype imaging system that is comprised of a sensor head,
control electronics and a processor display.
The purpose of the Gamma Cam is to provide a spatial indication of radiation "hot
spots." This information can be used in generating improved work plans, especially for
shielding as a general ALARA tool. The Gamma Cam has been evaluated at Con
Edison's Indian Point (IP) 1 and 2 Nuclear Power Generating Stations.

ALPHA SPECTRA Booth 418
Alpha Spectra manufactures scintillation detectors for health physics, academic, industrial,
medical and exploration applications. Materials used include most of the scintillation
phosphors e.g. NaI(Tl), BGO, plastics, etc.

AMERSHAM CORP Booths 240, 242
The complete range of reference sources and solutions for instrument calibration and
environmental monitoring.

ANALYTICAL Booth 122
RESOURCES INC.

ANALYTICS INC. Booth 113

APFEL ENTERPRISES INC
Neutron measuring equipment based on superheated drop (bubble) technology REMbrand™ - close equivalent survey monitors weighing under 3 pounds.
Neutronometer-s, passive, immediate readout, and dose-equivalent.

APTEC NUCLEAR INC Booths 206, 208
Aptec's line of advanced WINDOWS 95
based MCA products plus PC-based alpha
and beta surface contamination monitors will be exhibited.

BATTELLE, PNNL Booths 212, 214
Battelle's Health Protection Department
offers services in all aspects of health protection.
These include: Instrument Testing,
Dosimeter Irradiations, HP Program Assistance,
Emergency Preparedness, Exposure Assessment,
Dosimetry Services, Industrial Hygiene, and Rad Engineering.

BECTON DICKINSON Booth 129
DIAGNOSTIC INSTRUMENT SYSTEMS
Featured will be the solid state tritium and
Beta Gas Monitors, along with programs to upgrade current units in the field. Training
and warranty programs are available.

BICRON NE Booths 104, 106, 108
Bicron NE provides a full line of contamination monitoring and dosimetry products.

BIONOMICS INC Booth 329
Disposal and transportation of radioactive, hazardous and mixed waste. Consulting services available.

BUBBLE TECHNOLOGY INDUSTRIES
Personal neutron dosimetry using the BD-PND neutron bubble detector MICROSPEC-
2 portable spectroscopic survey system provides dose and complete spectral information
from X-ray, photon and beta sources.

CANBERRA Booths 529, 531
INDUSTRIES INC 533, 535, 628,
630, 632, 634
Canberra will demonstrate a wide variety of equipment for environmental restoration,
decommissioning and decontamination, waste assay and health physics applications.
The Gamma Analyst automatic gamma spectrometer and Alpha Analyst, an integrated
alpha spectroscopy system will be on display.

DOSITEC Booth 428
Dosispec Electronic Dosimetry System is a Real-Time Access Control System providing supervisory access to entry and exit data, personnel records, and RWP authorization information.

DOSIMETER Booth 102
Survey instruments for Health Physics, Medical Physics and dosimetry products for the real user.

DOSITEC INC Booth 433
Dositec Electronic Dosimetry System is a Real-Time Access Control System providing supervisory access to entry and exit data, personnel records, and RWP authorization information.

DREXEL Instrumental Inc.
Supplier of radiation detection and counting instrumentation including portable instruments,
personal contamination monitors, hand probes and air monitoring.

EG&G NUCLEAR Booths 413, 417, 419,
512, 514, 516
DSPEC is the world's first integrated, DIGITAL, DSP-based Gamma-Ray Spectrometer.
Network ready, with a BUILT-IN ETHERNET adaptor, DSPEC is easily integrated into existing Local Area Networks and is part of the ORTEC "Connections" family.
DSPEC provides via its "INSIGHT" virtual oscilloscope, an automated means of optimizing the performance of ANY HPGe detector under all conditions of count-rate,
and with all sizes of detector. DSPEC delivers unmatched performance in STABILITY.

EUCLID GARMENT Booth 114
MFG CO
Euclid Garment will display a complete line of re-usable protective apparel: Coveralls, headwear, footwear, and gloves, plus many other items such as tape, rope, signs, tackmats, and polyethylene garments.

training solutions through computer based learning packages and traditional, live instructor taught short courses.

D A SERVICES Booth 141
Featuring a full line of Anti-C clothing and radiation protection supplies. Highlighting D.A. Services Rad-waste volume reduction programs and Inventory Management Partnerships.

EBERLINE INSTRUMENTS Booths 330, 231
Supplier of radiation detection and counting instrumentation including portable instruments,
personal contamination monitors, hand probes and air monitoring.
EXPLORANUM Booth 217
Radiation environmental monitoring systems for aircraft, truck/car, ground/network, and portable handhelds, using sodium iodide spectrometer technology to identify specific nuclides, dose rates, etc. designed to meet your specific requirements.

F&J SPECIALTY PRODUCTS INC Booth 230
Airborne monitoring equipment and supplies for health physics applications, including air flow calibration systems, radon detection products, and air sampling systems.

FEMTO-TECH INC Booth 239
Manufacturers of continuous air and process instrumentation.

GAMMA PRODUCTS INC Booth 508
Gamma Products, Inc. manufactures automated gamma counting systems for Marinelli beakers and other samples, and manual and automated alpha/beta counting systems. We also specialize in low level shielding.

GE REUTER-STOKES INC Booth 534
Introducing the NEW Reuter-Stokes Environmental Monitoring System. Also exhibiting Reuter-Stokes' reliable He3 neutron counters and gamma ion chambers.

GTS DURATEK Booth 142
Health physics training, professional staff augmentation, 10 CFR 20 and DOE Rad Con Manual compliance, assessments, temporary HP technical support, radioactive waste treatment technologies, radiation instrumentation calibration and rental service.

HALLIBURTON NUS CORP Booth 202
Health Physics Instruments
Manufactures Portable and INED Radiation Measuring Instrument including survey instruments, area monitors, personnel dosimeters and neutron REM meters.

HEALTH PHYSICS SOCIETY PUBLICATIONS 117
Booths 115, 414
SCIENTIFIC SERVICES
Booth 414
HOLADAY INDUSTRIES INC Booth 308
Non-ionizing radiation detection and measurement instrumentation. RF induced current instrumentation.

ICN DOSIMETRY SERVICES Booth 301
Dosimetry Services.

ISOTOPE PRODUCTS LABORATORIES Booths 203, 205, 207, 209
Isotope Products Laboratories Supplies over 85 different nuclides in many different and unusual configurations. IPL is a NIST traceable laboratory and is audited by a member of Nuclear Procurement Issues Committee (NUPIC). IPL specializes in supplying standards and sources built to the customer's specifications. For over 28 years IPL has been a major supplier of radioactive standards, sources and nuclides.

J L SHEPHERD ASSOC Booths 536, 538

LANCS INDUSTRIES, INC Booth 300
Health Physics/Radiological control items. Tents, containment, glove bags, lead wool blankets, shielding, protective clothing, tubing, bags, hepar filters, signs, air fed hoods, and related accessories. Specialty manufacturing.

LANDAUER INC Booths 337, 339
Landauer, headquartered in Glenwood, IL is a leading provider of analytical services to determine personal exposure to occupational and environmental radiation hazards in the workplace and home.

LND INC Booth 412
Nuclear radiation detectors-GM tubes, BF3 HE3, proportional counters. Ionization chambers, gas sampling, fission chambers-standard detectors or custom designed.

LUDLUM MEASUREMENTS INC Booths 420, 422
Ludlum will display Health Physics instrumentation manufactured by Ludlum including portable and laboratory radiation detection devices.

MGP INSTRUMENTS, INC. Booth 218
MGP Instruments provides a complete range of instrumentation and engineering services for Health Physics applications and radiation monitoring for all nuclear facilities.

MJW CORPORATION INC Booth 437
MJW Corporation provides Radiological Consulting Services and Multimedia Computer Software. Titles on display include the Graphical Electronic Dosimetry Display system, Visual Survey Data System, Interactive Video Tour System and Health Physics Fundamentals Training Program.

MOHAWK INDUSTRIAL & NUCLEAR SUPPLY, INC.

NATIONAL NUCLEAR CORP Booth 229
NNC offers contamination monitors, scrap monitors and waste monitors. NNC division: Xetex offers dosimeters, ratemeters, area monitors, and the Abacus Alpha/Beta Sample Counter; NNC division: Reactor Experiments offers radiation shielding and high purity metal foils and wires.

NFS-RADIATION PROTECTION SYSTEMS Booth 222
Radiological control software and hardware for the nuclear industry.

NORTH AMERICAN SCIENTIFIC, INC. Booths 334, 336
North American Scientific, Inc. offers a broad line of high quality NIST traceable radiation reference standards for environmental, medical and industrial applications. Special bioassay and laboratory cross-check programs are available utilizing samples supplied from our new Gold Standard line of reference materials. Please visit our booth for details and product information.

NORVELL PROT INC Booth 338
CLOTHING MFGS
Recognized as the innovator of many of the nuclear industry's standard protective garments, Norvell is a woman-owned business with a 25-year history of reliable service and quality garment manufacture, as well as a full range of safety supplies and accessories. Professional Laundry Management meets your laundry challenges, too.

NRRPT Booth 139
NUCLEAR MEDICINE Booth 408
RESEARCH COUNCIL AND WORKING GROUP
The Nuclear Medicine Research Council is an informal group of scientists, educators, administrators, retirees, cancer patients, and other interested citizens devoted to beneficial applications of radionuclides for the diagnosis and treatment of cancer. We promote research at the Hanford Site toward development and applications of radionuclides for medicine. Our group is a non-profit organization incorporated in the
Nuclear News is the monthly news magazine of the nuclear industry, published by the American Nuclear Society. Also published by ANS is Radwaste Magazine, a bimonthly covering radwaste management etc.

Oxford Instruments Inc., Nuclear Measurements group is a manufacturer of nuclear counting systems. Product lines include gamma and alphaspectroscopy systems, low level alpha and beta counting systems, NIM, and educational counters.

Nuclear Research Corporation manufactures "smart" a complete line of radiation monitoring systems, lab coolers.

Packard Instrument Company manufactures Tri-Carb® low level liquid scintillation counting (LSC) systems for environmental and radioactive waste sample analysis from 100Kev to 6Mev and 0.01 NR to 1.4 MR.

LexiRad Booth 528
LexiRad is a manufacturer of nuclear instrumentation for neutron area and criticality monitors; continuous air monitors for airborne particulates, iodine and noble gases; stack monitors; tritium & liquid monitors.

Nuclear News/Booth 321
Radwaste Magazine
Nuclear News is the monthly news magazine of the nuclear industry, published by the American Nuclear Society. Also published by ANS is Radwaste Magazine, a bimonthly covering radwaste management etc.

Nuclear Research Corp Booth 401, 403
Nuclear Research Corporation manufactures a complete line of radiation monitoring systems; Health Physics Instrumentation with "smart" probes; environmental monitors utilizing global positions and GM tubes.

Ordeola Inc Booth 409
Ordeola, Inc. provides alpha spectrometry instrumentation for RAPID alpha assay of water, soil, smears, and air filter samples. Also offered is a line of position-sensitive proportional counters for x-rays and neutrons. Custom instruments are a specialty!

Orise Booth 532
Photographic display and catalogs of the training activities in the health physics training classes offered.

Rad ELEC Inc Booth 305
Rad ELEC Inc offers the E-PERMS® System for accurate, effective passive radiation monitors with electron ion chamber technology.

Radcal Corp Booth 416
Radcal manufactures and markets a wide variety of products for x-ray QA and compliance. Our ionization chambers cover 10Kev to 6MeV and 0.01 NR to 1.4 MR.

Radiation Safety Booth 303
Radiation surveys, assessments and plans; decontamination and decommissioning, radiological analysis; publications and software for health physicists.

Rados Technology Inc
Rados Technology is one of the leading companies in contamination monitoring and dosimetry systems with representatives in virtually every country with a nuclear presence.

Rso Inc Booth 204
RSO, Inc. is a full service health physics company. Visit our Web Site at: http://www.us.net/nicosoft/rs

Safe Training Booth 238
Safe Training Systems Ltd.
STS designs and manufactures simulators for radiation monitoring training: 800 series for surface contamination, 900 series for radiation field measurements including dosimeters; plumes system for airborne fallout training.

Saic/Rade/Co Booths 128, 130
SAIC RadeCo provides a complete line of quality products and services including: RadeCo air samplers, air flow calibrators, portable alpha analyzers, calibration services, alarming dosimeters, personnel contamination monitors, radiiodine sampling cartridges, radiation monitoring systems, training and consulting services.

Scintech Booth 323
Spectrum Sciences, Inc.
Low background Alpha/Beta counting systems, nuclear spectrometers, DOSICARD (personal dosimeter), Silicon & Germanium detectors and a complete line of health physics instruments.

Technical Associates
Current version of health physics equipment includes sensitivity to EP levels, tritium monitoring equipment and recent advances in micro processor controls.

Teledyne Brown Booth 228
Teledyne Brown Engineering
TLD systems, TLD badge service, NaI Scintillation Detectors, Radiological Services.

Tgm Detectors Inc Booth 335
Radiation Detectors for every application. GM tubes BF3 and He3 Neutron Detectors, Fission and Ion Chambers and X-ray proportional counters that will meet your design needs.

The Source Inc Booth 138
Calibration standards traceable to NIST for nuclear measurement instruments.

Thermo Nuclear Services Booth 328
Thermo Nuclear Services Inc.
NFS provides site characterization, remediation investigation, remediation and value added program management to the customer with mixed or rad waste challenges.

Nuclear Fuel Services Inc.
Nuclear Fuel Services Inc.
Nuclear Fuel Services Inc.
THOMAS GRAY & ASSOCIATES, INC.
Processing and disposal of LLRW, mixed waste, sealed sources, NORM & NARM waste, decay in storage, transportation, health physics services.

US DEPARTMENT Booths 302, OF ENERGY/ 304 ENVIRONMENTAL MANAGEMENT PROGRAM
The Department’s EM exhibit highlights some of the technologies being used to address environmental contaminants. This Program manages the treatment, storage, and/or disposal of waste resulting from nuclear weapons production.

US ECOLOGY INC Booth 215
Brokerage services including processing and disposal of LLRW and mixed waste, field services including remediation projects.

US NUCLEAR REGULATORY COMMISSION
The mission of the US Nuclear Regulatory Commission is to ensure adequate protection of the public health and safety, the common defense and security, and the environment in the use of nuclear materials in the United States.

VICTOREEN INC Booth 312
WALLAC INC Booth 518
WILLIAMS AND WILKINS Booth 306
YANKEE ATOMIC ELECTRIC CO. Booth 500
Environmental laboratory services, TLD processing services, decommissioning, general health physics services, auditing (ISO 14000), and Nuclear Engineering services.

Author Index
-A-
Abbott, D., WAM-D.20
Abdul-Majid, S., WPM-A.4, WPM-C.16
Abelquist, E. W., MPM-B.2, TAM-F.2
Abulfaraj, W. H., WPM-D.16
Ackermann, R. J., TAM-A.16
Acord, J. L., WPM-B.1
Adams, S. R., WAM-D.9
Agrawal, G. A., WPM-A.16
Akbar-Khanzadeh, F., THAM-B.6
Akselrod, M. S., WAM-D.3
Alberth, D., TAM-F.1
Albin, C. L., WAM-C.10
Albright, L. J., WAM-A.2
Armstrong, D. R., WPM-C.18
Arnold, J. J., MPM-C.12
Arnold, D., WPM-D.12
Arora, R. K., TAM-D.11
Arora, R., TAM-D.10
Atkins, L. J., WAM-D.19
Aydogan, B., TPM-C.7
Bilgen, S., TPM-C.6
Borg, K. M., TPM-C.6
Bostrom, G., TPM-C.6
Bourdages, M. E., WAM-A.10
Buck, J. W., MPM-C.5
Buckner, M. A., TAM-A.11
Burmeister, R. E., TAM-C.14
Burns, R. E., TAM-E.4
Burns, Jr., R. E., TAM-E.6
Burmeister, R. E., TAM-E.5
Bums, R. E., WAM-D.4
Bush, S. P., TPM-A.12
Buttfield, K. B., TAM-C.12
-C-
Calkins, L. M., TAM-C.7
Cau, Z., TAM-D.3, TAM-D.4
Cappiello, C. C., TAM-C.12
Bell, R. T., THAM-C.14
Benke, R. R., TPM-A.11
Bennett, T. E., TAM-D.6, TAM-E.4
Bernhardt, D. E., WAM-C.7
Benkert, J. H., TAM-E.4
Bier, S. G., TAM-C.14, WAM-D.8
Bieracka, M., WPM-C.12
Billings, M., TAM-D.19
Binney, S. E., TAM-A.2
Biwer, B. M., MPM-C.12
Bjornal, B., THAM-B.1
Blair, M. S., TAM-D.15, WAM-D.16
Blasi, C., TPM-A.2
Blasi, C. J., TAM-D.17
Boddeker, S., TPM-A.1
Bogdan, J., TPM-C.2
Bolch, E., THAM-C.9
Boston, R. D., TAM-C.11
Bouchet, L. G., TPM-C.1, TPM-C.5
Bowman, C. R., WAM-C.15
Boyde, M. S., WAM-A.14
Bramlett, E. T., WAM-D.14
Brantley, S. D., TAM-C.7
Bult, T. E., MPM-B.3
Bravender, S. L., WAM-A.1
Brennan, M. J., TAM-C.10
Brey, R. R., MPM-C.11, TAM-A.22, TAM-C.11, WAM-C.10, THAM-B.8
Brown, D., TAM-D.8
Brown, M. D., TAM-C.13
Brown, R. M., MPM-C.4
Brown, T. H., TAM-C.16
Buck, J. W., MPM-C.5
Buckner, M. A., TAM-D.3
Burmeister, R. E., TAM-E.5
Burns, R. E., TAM-E.4
Burns, Jr., R. E., TAM-C.2
Bush, S. P., TPM-A.12
Buttfield, K. B., TAM-C.12
Calkins, L. M., TAM-C.7
Callan, C., WPM-D.6
Cantaloze, M. G., TPM-A.4
Cao, Z., TAM-D.3, TAM-D.4
Cappiello, C. C., TAM-C.12
Sunderland, N. R., WAM-A.1
Supernaw, T., WAM-C.6
Susslov, K. G., THAM-C.2
Szostak, P., THAM-C.13
Tatro, G. L., TPM-B.1
Tavares, M. C., TAM-A.7
Taylor, J. H., WAM-C.4
Taylor, P. L., TPM-C.3
Taylor, S., THAM-D.3
Tenforde, T. S., THAM-E.1
Thomason, R. S., TAM-D.14
Thompson, D. A., TPM-A.6
Thomasen, L. M., TAM-A.1, TAM-A.3
Tompkins, M., TAM-E.2
Toohy, R. E., TAM-B.3, THAM-A.5
Townsend, L. W., TAM-C.5, TAM-C.14
Traub, R. J., TAM-C.4, WAM-D.7
Trimble, III, H. N., WAM-A.8
Upp, D. L., TAM-E.1
Vargo, G. J., THAM-A.2
Vasiliak, D. G., TAM-C.9
Vernetson, W. G., THAM-C.9
Vernonee, Jr. W. A., TPM-B.5
Vilks, T., THAM-A.6
Wheller, V., WAM-D.3
Williams, G. E., WPM-D.9
Williams, T. H., TPM-D.7
Williams, W. A., WPM-C.5
Woods, J. A., WAM-D.14
Workman, W. J., TPM-C.4
Wu, C. F., TPM-B.1
Wenz, G., WPM-C.6
Wershofen, H., WPM-C.12
Westbrook, J. L., THAM-A.3
White, D. E., TPM-C.4
Whiteley, R. L., TPM-B.1
Widner, T. E., WAM-C.1, WAM-C.6
Williams, G. E., WPM-D.9
Workman, W. J., TPM-C.4
Wu, C. F., TPM-B.1
Xiao, Q.-F., TPM-C.2
Xu, X. G., TAM-A.19, TAM-A.21
Yang, Y., WPM-A.9
Yaniv, S. S., WAM-D.6
Yong, L. K., TPM-B.8, TAM-D.14
Yu, C., TAM-E.3, TAM-E.7, WPM-C.5
Yu, Y., TAM-A.10, TAM-C.12
Zaidi, M. K., TAM-C.10
Zarucki, R., WPM-C.12
Zheng, J. Z., TPM-C.10
Zhu, M., TAM-A.20
Zimbrick, J. D., THAM-E.6
Zobel, S. G., WPM-B.7, WPM-B.8
Zoon, R. A., TAM-B.2
Zummo, J. J., TAM-A.12
Saturday, May 21

AAHP I
- Health Physics of Research Reactors
 - Time: 8 am - 5 pm
 - Room: Sheraton Hotel

AAHP II
- The Basic DOE/NRC Nuclear Transportation Regulations
 - Time: 8 am - 5 pm
 - Room: Sheraton Hotel

AAHP III
- Health Physics Records Management
 - Time: 8 am - 5 pm
 - Room: Sheraton Hotel

American Nuclear Society (ANS) Meetings

<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45 am</td>
<td>Annual Session Rooms 6A/GB</td>
</tr>
<tr>
<td>12:15 pm</td>
<td>Professional Enrichment Program Rooms 6A/GB</td>
</tr>
</tbody>
</table>

Continuing Education Lectures

CLL-1
- Recent Developments in Radiation Protection
 - Time: 7:30 - 8:15 am
 - Room: Rooms 605/607

CLL-2
- Status of Low-Level Radioactivity Waste Disposal
 - Time: 7:15 - 8:15 am
 - Room: Rooms 600/609

CLL-3
- Skin Irritation and Dosimetry for Selected Photometric Procedures
 - Time: 7:15 - 8:15 am
 - Room: Rooms 600/609

CLL-4
- TBA
 - Time: 7:15 - 8:15 am
 - Room: Rooms 600/609

CLL-5
- TBA
 - Time: 7:15 - 8:15 am
 - Room: Rooms 600/609

Note: All events will take place in the Washington State Convention Center except when noted otherwise.

PEP Courses

<table>
<thead>
<tr>
<th>Time</th>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 am</td>
<td>TBA</td>
<td>6A/GB</td>
</tr>
<tr>
<td>8:45 am</td>
<td>TBA</td>
<td>6A/GB</td>
</tr>
<tr>
<td>9:30 am</td>
<td>TBA</td>
<td>6A/GB</td>
</tr>
<tr>
<td>10:15 am</td>
<td>TBA</td>
<td>6A/GB</td>
</tr>
<tr>
<td>11:00 am</td>
<td>TBA</td>
<td>6A/GB</td>
</tr>
<tr>
<td>12:45 pm</td>
<td>TBA</td>
<td>6A/GB</td>
</tr>
<tr>
<td>2:00 pm</td>
<td>TBA</td>
<td>6A/GB</td>
</tr>
<tr>
<td>3:45 pm</td>
<td>TBA</td>
<td>6A/GB</td>
</tr>
<tr>
<td>5:30 pm</td>
<td>TBA</td>
<td>6A/GB</td>
</tr>
</tbody>
</table>

Professional Enrichment Program (PEP)

<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:15 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>2:00 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>3:45 pm</td>
<td>TBA</td>
</tr>
</tbody>
</table>

PEP Courses

<table>
<thead>
<tr>
<th>Time</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 am</td>
<td>TBA</td>
</tr>
<tr>
<td>8:45 am</td>
<td>TBA</td>
</tr>
<tr>
<td>9:30 am</td>
<td>TBA</td>
</tr>
<tr>
<td>10:15 am</td>
<td>TBA</td>
</tr>
<tr>
<td>11:00 am</td>
<td>TBA</td>
</tr>
<tr>
<td>12:45 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>2:00 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>3:45 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>5:30 pm</td>
<td>TBA</td>
</tr>
</tbody>
</table>

Simulation, May 22

<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45 am</td>
<td>TBA</td>
</tr>
<tr>
<td>12:15 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>2:00 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>3:45 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>5:30 pm</td>
<td>TBA</td>
</tr>
</tbody>
</table>

Simulation, May 22

<table>
<thead>
<tr>
<th>Time</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45 am</td>
<td>TBA</td>
</tr>
<tr>
<td>12:15 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>2:00 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>3:45 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>5:30 pm</td>
<td>TBA</td>
</tr>
</tbody>
</table>

Simulation, May 22

<table>
<thead>
<tr>
<th>Time</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45 am</td>
<td>TBA</td>
</tr>
<tr>
<td>12:15 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>2:00 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>3:45 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>5:30 pm</td>
<td>TBA</td>
</tr>
</tbody>
</table>

Simulation, May 22

<table>
<thead>
<tr>
<th>Time</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45 am</td>
<td>TBA</td>
</tr>
<tr>
<td>12:15 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>2:00 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>3:45 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>5:30 pm</td>
<td>TBA</td>
</tr>
</tbody>
</table>

Simulation, May 22

<table>
<thead>
<tr>
<th>Time</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45 am</td>
<td>TBA</td>
</tr>
<tr>
<td>12:15 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>2:00 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>3:45 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>5:30 pm</td>
<td>TBA</td>
</tr>
</tbody>
</table>

Simulation, May 22

<table>
<thead>
<tr>
<th>Time</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45 am</td>
<td>TBA</td>
</tr>
<tr>
<td>12:15 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>2:00 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>3:45 pm</td>
<td>TBA</td>
</tr>
<tr>
<td>5:30 pm</td>
<td>TBA</td>
</tr>
</tbody>
</table>