HEALTH PHYSICS SOCIETY

63rd Annual Meeting
Huntington Convention Center • Cleveland, Ohio • 15-19 July 2018

PRELIMINARY PROGRAM
THANK YOU TO OUR 2018 HPS SPONSORS

GOLD

Bionomics
Oak Ridge, TN

Mirion Technologies

NSSI

PerkinElmer
For the Better

Versant
Medical Physics and Radiation Safety

SILVER

C&C Irradiator Service LLC

Global Nucleonics

Hi-Q Environmental Products Company, Inc.
Air Sampling & Radiation Monitoring Equipment, Systems & Accessories

SafetyStratus
Enterprise EHS Software Platform

Thermo Fisher Scientific
63rd Annual Meeting

HEALTH PHYSICS SOCIETY

Huntington Convention Center • Cleveland, Ohio • 15-19 July 2018

Key Dates

1 June
Current Events/Works-In-Progress Deadline

13 June
HPS Annual Meeting Preregistration Deadline

14 June
Hilton Cleveland Downtown Hotel
Registration Deadline

15-19 July
Professional Enrichment Program
HPS 63rd Annual Meeting

16 June
Westin Cleveland Downtown Hotel
Registration Deadline

14 July
AAHP Courses

16 July
American Board of Health Physics
Written Exam

18-20 July
PDS Course

Registration
Hours and Location
Huntington Convention Center, Exhibit Hall A

Sunday, 15 July
7:00 am - 5:00 pm

Monday, 16 July
8:00 am - 4:00 pm

Tuesday, 17 July
8:00 am - 4:00 pm

Wednesday, 18 July
8:00 am - 4:00 pm

Thursday, 19 July
8:00 am - 11:00 am

Saturday
Saturday AAHP Courses
will take place in the
Huntington Convention Center

Sunday-Thursday
PEPs, CELs, and Sessions
will be at the Huntington
Convention Center
Student Worker Orientation

Mandatory Meeting for Student Travel Grant Awardees

Saturday, 14 July, 5:45 pm – 6:45 pm

Center Street A, Hilton Hotel

Current Events/Works-In-Progress

The submission form for the Current Events/Works-in-Progress poster session is on the Health Physics Society Website at www.hps.org under the Cleveland Annual Meeting section. The deadline for submissions is Friday, 1 June 2018. All presentations will take place as posters on Monday, 16 July, between 1:00-3:00 pm. Individuals will be notified of acceptance of their poster submissions by mid-June.

For questions regarding poster submissions, contact HPSProgram@burkinc.com or Lori Strong at the HPS Secretariat at LStrong@burkinc.com.

Note For CHPs

The American Academy of Health Physics has approved the following meeting-related activities for continuing education credits for CHPs:

- Meeting attendance is granted 1 CEC per contact hour, excluding meals and business meetings;
- AAHP 8-hour courses are granted 16 CECs each;
- HPS 2-hour PEP courses are granted 4 CECs each;
- HPS 1-hour CELs are granted 2 CECs each.

Officers

President - Eric Abelquist
President Elect - Nolan Hertel
Past President - Bob Cherry
Secretary - Karen Langley
Treasurer - Michael Lewandowski
Treasurer Elect - Steven King
Executive Director - Brett Burk

Board of Directors

James Bogard
Elaine Marshall
John Cardarelli
Jeffrey Whicker
Mike Mahathy
Debra Scroggs
Jason Harris
Tara Medich
Thomas Morgan

2018 Exhibitors

(as of June 2018)

- Army Medical Recruiting
- Arrow-Tech, Inc.
- Berthold Technologies
- Bertin Instruments
- Best Dosimetry Services
- BIC Technology Ltd
- Bionomics
- Bladexel
- C&C Irradiator Service, LLC
- CAEN SYS srl
- Chase Environmental Group, Inc.
- ChemStaff
- CHP Consultants/CHP Dosimetry Conference of Radiation Control Program Directors, Inc.
- Eagle Integrated Services
- Eckert & Ziegler Isotope Products Environmental Instruments Canada Inc.
- F&J Specialty Products Inc.
- Faxitron Bioptics, LLC
- FLIR Systems
- Fluke/RaySafe/Landauer, Inc.
- Fuji
- G/O Corp
- Gamma Products, Inc.
- Global Nuclenomics
- H3D, Inc.
- Health Physics Instruments
- Hi-Q Environmental Products Co.
- Hopewell Designs, Inc.
- HPS Journal/Newsletter
- Illinois Institute of Technology
- J.L. Shepherd & Associates
- K&S Associates, Inc.
- LabLogic Systems, Inc.
- LAURUS Systems Inc.
- LND, Inc.
- Ludlum Measurements, Inc.
- Mazur Instruments
- Mirion Technologies
- NRRPT
- NSSI
- Nuclear News (ANS)
- Nuvia Dynamics Inc. (formerly Pico Envirotec Inc.)
- NVS
- Offsite Source Recovery Program/LANL
- ORAU
- Ortec
- PerkinElmer
- Perma-Fix Environmental Services, Inc.
- Philotechnics
- Radiation Safety & Control Services
- Radiation Solutions Inc
- RSO
- SafetyStatus
- SE International
- Spectral Labs Incorporated
- Spectrum Techniques
- Technical Associates/Overhoff Technology
- Teletrix
- TestAmerica
- Thermo Fisher Scientific
- Transco Products Inc.
- Ultra Electronics Energy
- Versant Medical Physics and Radiation Safety
5th Annual Quiz Bowl
You and your friends can test your knowledge against other HPS members (members are encouraged to group with students and young professionals). Join in on the fun Sunday, 15 July, 4:00-5:30 pm, at the Huntington Convention Center in Room 9.

Welcome Reception
The Welcome Reception this year will be held on Monday, 16 July from 5:30-7:00 pm in Exhibit Hall A. Join fellow attendees for a time to socialize and renew old acquaintances. A cash bar will be available with appetizers.

Exhibits
Free Lunch! Free Lunch! – 12:00 pm, Monday, 16 July and Tuesday, 17 July. All registered attendees are invited to attend a complimentary lunch in the Exhibit Hall.

Breaks Monday Afternoon-Wednesday Morning – Featuring morning continental breakfasts and afternoon refreshments such as fruit, ice cream, and cookies. Be sure to stop by and visit with the exhibitors while enjoying your refreshments!

AAHP Exam
Hilton, Center Street A
Monday, 16 July, 12:30-6:30 pm

Reception for Women and Minorities in RP
Huntington Convention Center, Room 12
Wednesday, 18 July, 1:15-2:15 pm

IMPORTANT EVENTS

HPS Works in Progress Submittal
Click HERE to submit.

Register HERE for the PDS

Sessions and Course Locations
AAHP Courses on Saturday are at the Huntington Convention Center; Sunday PEPs are in the Huntington Convention Center; PEPs, CELs, and all sessions Monday through Thursday will take place at the Huntington Convention Center.

AAHP Awards Luncheon
Huntington Convention Center, Room 9
Tuesday, 17 July • Noon-2:00 pm

HPS Awards Plenary
Join us Wednesday, 18 July, for the new format of the Awards Program. We look forward to seeing you by 8:00am for the presentation at the Hilton Downtown Cleveland. There will be a buffet breakfast provided that begins at 7:30am. We look forward to seeing you there. Please note, this is in place of the Awards Banquet that was previously on Tuesday evenings.

HPS Business Meeting
Huntington Convention Center, Room 1
Wednesday, 18 July, 5:30-6:30 pm

Professional Development School
Join us for the PDS, 18-20 July 2018 at the Cleveland Convention Center and CWRU. See page 8 for more information.

Again this YEAR!
PEP Courses will have presentations posted online for those who have signed up for them prior to the meeting. There will be no hard copy handouts. See page 39 for course information

Things to Remember!
All speakers are required to check in at the Speaker Ready Room in the Huntington Convention Center, Room 2, at least one session prior to their assigned session.
Preregistration Policy: Unless payment accompanies your form, you will NOT be considered preregistered.

All posters up Monday–Wednesday in Exhibit Hall
Poster Session featured Monday, 1:00-3:00 pm
No other sessions at that time
PEP Refund Policy
See page 39.
WELCOME

The Ohio chapter of the Health Physics Society is excited to welcome you to Cleveland, Ohio, for the 63rd HPS Annual Meeting. The vibrant lakeside city of Cleveland is an eclectic mix of nationally-recognized chefs, an incredible live music scene, more than 30,000 acres of parkland, major attractions like the Rock and Roll Hall of Fame, world-renowned arts & cultural institutions and the nation’s second-largest performing arts district. More than $3 billion in tourism-related development has brought a new convention center, the Horseshoe Casino Cleveland, the Greater Cleveland Aquarium, hotels and more. We encourage you to make plans to attend this meeting and enjoy the sites. Visit the link to This is Cleveland at www.thisiscleveland.com.

WEATHER & LOCAL AREA

Cleveland has an average July temperature of 83 degrees F and may drop to just below the mid 60s at night, with high humidity along with sporadic thunderstorm activity. The Hilton Cleveland and Westin Cleveland are well air-conditioned and are located nearby the Cleveland Convention Center within easy walking distance.

TO/FROM AIRPORT, GETTING AROUND DOWNTOWN

Cleveland-Hopkins International airport is located about 12 miles from the Hilton and the Westin. The CLE airport Taxi service runs 24/7 and fares may cost about $36. In addition, both Uber and Lyft are now encouraged as alternatives to transportation between the hotels and the airport.

ACCOMMODATIONS

Hilton Cleveland Downtown
100 Lakeside Avenue East, Cleveland, OH 44114; Direct Phone 216-413-5000
HPS Rate: $166 per night.

Westin Cleveland Downtown
777 Saint Clair Avenue NE. Cleveland, OH 44114; Direct Phone 216-771-7700
HPS Rate: $166 per night.

SAVE THE DATE

HPS 52nd Midyear Meeting
17-20 February 2019 • San Diego, CA

HPS 64th Annual Meeting
7-11 July 2019 • Orlando, FL
TOURS & EVENTS

Monday, 16 July

Great Lakes Brewery Tour
4:00 pm–6:00 pm Preregistration: $59/Onsite: $64
Leaves from the Hilton Hotel Lobby

The brewery tour will lead you through more than just our production facility. Guests also journey through GLBC's and Cleveland's history and, of course, take each step with a beer in hand. Beginning in the new Beer Symposium guests grab their first brew and view displays that showcase our heritage and unique company culture. An interactive kiosk leads users through the basics of brewing and our award-winning beers. A short video officially kicks off the tour before we venture across the street to the production brewery for more beer samples and a fun, in-depth exploration of the brewing process. Tours last approximately 60 minutes.

Open Mike Night
Monday Evening Free
Details are still being worked out on this fun event. Stop back for details.

Tuesday, 17 July

5K Fun Run/Walk
6:30 am–8:30 am Preregistration: $33/Onsite: $37
Leaves from the Hilton. Edgewater Park

Cleveland Museum of Art
9:30 am–1:30 pm Preregistration: $30/Onsite: $35
Lunch on own at café.

Enjoy a private docent tour of the permanent collection at the Cleveland Museum of Art. After touring you’ll enjoy lunch on your own at Provenance Café in the Museum.

Provenance Café features lunch, and snack options made in an open kitchen. The café offers an incredible variety of seasonal soups and salads, hot and cold sandwiches, beverages, desserts, and more. The café’s hearth oven features a selection of locally sourced, globally inspired dishes.

Night Out - Hofbräuhaus Cleveland
6:30 pm Preregistration: $54/Onsite: $59

Enjoy a memorable Night Out at the Hofbräuhaus Cleveland, modeled after the legendary 400+ year-old Hofbräuhaus in Munich, Germany! You will be able to enjoy many of the traditions from Germany that have made Hofbräuhaus famous. From the traditionally decorated rooms in the building to the beer that is brewed on-site, and of course the excellent German fare, Hofbräuhaus Cleveland is a memorable experience for all. Ticket price includes dinner and transportation.
Wednesday, 18 July

Pub Crawl
6:30 pm
Preregistration: $20/Onsite: $25

Commensurate shirt included!

Sign-up early as we have a limited number of shirts.

The Pub Crawl is always a fun-for-all event. Cleveland is well known for its microbreweries, pubs, and taverns. Come join us as either an active participant or one who just likes great company.

Thursday, 19 July

Technical Tour: Thermo Scientific’s Harshaw Dosimetry Lab
9:15 am–12:00 pm
Free

Experience the manufacturing of the Thermo Scientific’s Harshaw Dosimetry line for yourself. A factory tour at the Thermo Scientific manufacturing facility in Oakwood, Ohio is scheduled to take place on Thursday the 19th of July. All aspects of dosimetry production take place at this facility from crystal growth for TLDs to final assembly of TLD readers. Also included on the tour will be a look at the assembly and testing of personnel contamination monitors like the iPCM12, and vehicle portal monitors like the ASMIV. The tour is free to attend. Transportation will be provided from the convention center. We will be leaving at 9:15 am from the convention center and returning around 12:00 pm. Space is limited so be sure to sign up using the online registration form to secure your spot.

ON YOUR OWN TOURS

Rock and Roll Hall of Fame

The Rock and Roll Hall of Fame, located on the shore of Lake Erie in downtown Cleveland, Ohio, recognizes and archives the history of the best-known and most influential artists, producers, engineers and other notable figures who have had some major influence on the development of rock and roll. Walk from hotel.

Open every day from 10:00am-5:30pm

Using the link and special promo code below, adult general admission tickets can be purchased at the discount rate of $18 (regularly $26). Offer available online only.

- Go to ticketing.rockhall.com
- Enter promo code “BigJoeTurner18” in the upper right hand corner at checkout
- Hit “Submit” to activate the code

Cleveland Zoo

The Cleveland Metroparks Zoo is a 183-acre zoo divided into several areas: Australian Adventure; African Savannah; Wilderness Trek; The Primate, Cat & Aquatics Building; The Rain Forest and Waterfowl Lake. It has one of the largest collections of primates in North America and features Monkey Island, a concrete island on which a large population of colobus monkeys and kept in free-range conditions(without cares or walls). The Zoo is part of the Cleveland Metroparks system.

www.clevelandmetroparks.com/zoo
Information for Registered Companions

Companion Registration cost is $110 and includes the Welcome Reception, Monday-Thursday breakfast buffet at the Huntington Convention Center, and lunch and breaks in the Exhibition Hall. There will not be a separate Hospitality Room, however the Local Arrangements Committee staff in Convention Center Room 8 will be happy to answer your questions or assist in finding the answer.

Monday, 16 July - Thursday, 19 July

Companion Breakfast
6:30-10:30 am, Hotel Restaurant at the Hilton Cleveland

Companion Registration includes Monday – Thursday breakfast buffet at the Hilton Cleveland, 6:00 to 10:30 a.m. A delicious buffet awaits you including made-to-order omelets, scrambled eggs, breakfast meats (sausage and bacon), French toast, pancakes, hot oatmeal, assorted pastries, fresh fruits, juice, coffee, and tea.

Registered companions are welcome to come to the lunch and breaks in the Exhibition Hall.

Monday, 16 July

Welcome to Cleveland Companion Orientation
Cleveland Representative – 8:00-9:00 am
Hilton Hotel Restaurant

The city orientation takes place Monday, 16 July from 8:00 to 9:00 a.m. at the Hilton Hotel Restaurant. A representative from Cleveland will be on hand to describe some of the many opportunities, provide maps, and answer questions.

Be sure to consider the tour options on pages 5-6 for the HPS sponsored events.

Monday, 16 July

Welcome Reception
5:30-7:00 pm, Exhibit Hall A, Huntington Convention Center

Come see old friends and make new ones! Enjoy hors d’oeuvres with a cash bar, 5:30-7:00 pm.
Welcome to the 2018 Professional Development School
Hands-on Medical Health Physics • Emerging Technologies & Challenges
18-20 July • Cleveland Convention Center and CWRU

The organizers of this PDS have applied to CAMPEP for approval of 20 medical physics CEC hours.

Technical advancements are transforming medicine and medical health physics. Today an enterprising medical health physicist is challenged with managing automated systems within a health care network. This professional development school (PDS) is intended for the medical radiation safety officer, adapting available technology to accreditation requirements such as reviewing/approving computed tomography (CT) protocols, patient education, and storing dose in electronic medical records (EMR). Additionally, an emphasis is placed on the knowledge and skills that 21st century medical health physicists need to remain relevant.

The PDS provides 20 hours (12 lecture and 8 hands-on) of training concentrated on applying technology for collecting and managing information within a health care enterprise and working with the latest technologies and exotic radioisotopes. Lecture topics are coupled with hands-on breakout sessions:

Lectures
- Medical Health Physics Horizon and Beyond, Kevin Nelson and David Jordan
- Certification Process for Health Physicists, Andy Miller and Steven King
- Spectral CT From Idea to Product, Thomas Morton
- Being Relevant to Your Institution, Dr. Derrwaldt, MD, and Joanne Rimac, RN
- MRI Safety, David Jordan
- X-Ray QC, ACR Accreditation, Peter Jenkins
- Radiation Dose Management in the Digital World, Chris Martel
- Patient Dosimetry, Peter Caraccapa
- Nuclear Medicine Response to Exotic Spill and Issues, Joseph Ring
- Image-Guided Interventions

Faculty
- Ronald Leuenberger (Administrative Dean), Northeast Ohio VA Healthcare System
- Chris Martel (Faculty Dean), Philips Healthcare Systems
- David Jordan, University Hospitals of Cleveland
- Andy Miller, Cleveland Clinic Foundation
- Ramses Herrera, Richmond VA Medical Center
- Peter Caraccapa, Rensselaer Polytechnic Institute
- Peter Jenkins, University of Utah
- Steven King, Pennsylvania State University, Hershey Medical Center
- Kevin Nelson, Mayo Clinic, Scottsdale
- Joseph Ring, Beth Israel Deaconess Hospital

Vendors Providing Instrumentation for Hands-On Activities
- Medical Physics Testing X Ray and Fluoroscopy (LACO)
- Hand-Held Spectroscopy With Nuclide ID (LACO)
- Calibration and Repair of Survey Meters (Ludlum)
- Solid State Dosimetry With Bluetooth Technology and Phone App (Mirion)
Preliminary Program

Hands-on Medical Health Physics • Emerging Technologies & Challenges

PDS follows a new format aligned with the Annual Meeting of the Health Physics Society. Wednesday lectures at the Cleveland Convention Center allow;

- Attending both the annual meeting and PDS in the same week
- Wednesday afternoon lectures offered as PEP & CEL.

New format

- PDS will relocate to Case Western Reserve University (CWRU) after Wednesday lectures (transportation is provided).
- Transportation is provided to the Wednesday night-out tour/lecture/dinner sponsored by Philips and then to the Courtyard Marriott on the campus of CWRU.
- Thursday/Friday lectures are at CWRU followed by break-out sessions hosted by PDS sponsors.
- Transportation is provided to/from breakout sessions on Thursday/Friday
- Second night-out on Thursday dinner/panel discussion hosted by vendor/sponsors.

Break-out Sessions: (assigned based on your ranking & slots available)
Four hours of instruction w/ hands-on experience. Rank your top 3 choices (you will attend 2 break-out sessions).

- MRI Safety (University Hospitals of Cleveland)
- NucMed Hot Laboratory Hands-on (Cleveland Clinic Foundation)
- Survey Instrument Calibration/Repair/Nuclide ID & CWRU Rad tour (Case Western Reserve University)
- Medical Physics Testing X-ray & QC (Veterans Healthcare Administration)
- Radiation Dose Tracking (Philips Healthcare Systems)
Committee Meetings

Meetings take place at the Huntington Convention Center (CC) or the Hilton Cleveland (H).

<table>
<thead>
<tr>
<th>Friday, 13 July 2018</th>
<th>Monday, 16 July 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABHP Board Meeting</td>
<td>ICC Welcome Breakfast for Int’l Attendees</td>
</tr>
<tr>
<td>8:30 AM – 5:00 PM</td>
<td>7:00 AM – 8:00 AM</td>
</tr>
<tr>
<td>Center Street A (H)</td>
<td>Room 11 (CC)</td>
</tr>
<tr>
<td>NRRPT</td>
<td>NRRPT</td>
</tr>
<tr>
<td>9:00 AM – 4:00 PM</td>
<td>9:00 AM – 4:00 PM</td>
</tr>
<tr>
<td>Room 1 (CC)</td>
<td>Room 10 (CC)</td>
</tr>
<tr>
<td>American Board of Medical Physics Exam</td>
<td>Medical Section Board Meeting</td>
</tr>
<tr>
<td>8:00 AM – 12:00 PM</td>
<td>12:00 PM – 1:30 PM</td>
</tr>
<tr>
<td>Room 9 (CC)</td>
<td>Room 12 (CC)</td>
</tr>
<tr>
<td>ABHP Board Meeting</td>
<td>HPS Nominating Committee</td>
</tr>
<tr>
<td>8:00 AM – 12:00 PM</td>
<td>12:00 PM – 2:00 PM</td>
</tr>
<tr>
<td>Hope AB (H)</td>
<td>Room 13 (CC)</td>
</tr>
<tr>
<td>Finance Committee</td>
<td>ABHP Exam</td>
</tr>
<tr>
<td>8:00 AM – 12:00 PM</td>
<td>12:30 PM – 6:30 PM</td>
</tr>
<tr>
<td>Hope C (H)</td>
<td>Center Street BC (H)</td>
</tr>
<tr>
<td>ABHP Part II Panel</td>
<td>Professional Development Committee</td>
</tr>
<tr>
<td>8:00 AM – 5:00 PM</td>
<td>1:00 PM – 2:00 PM</td>
</tr>
<tr>
<td>Center Street D (H)</td>
<td>Room 19 (CC)</td>
</tr>
<tr>
<td>NRRPT</td>
<td>Chapter Council Meeting</td>
</tr>
<tr>
<td>9:00 AM – 4:00 PM</td>
<td>1:30 PM – 2:30 PM</td>
</tr>
<tr>
<td>Room 10 (CC)</td>
<td>Room 1 (CC)</td>
</tr>
<tr>
<td>Executive Committee Meeting</td>
<td>MHPS Committee on Issues</td>
</tr>
<tr>
<td>12:00 PM – 4:00 PM</td>
<td>1:30 PM – 2:30 PM</td>
</tr>
<tr>
<td>Hope C (H)</td>
<td>Room 12 (CC)</td>
</tr>
<tr>
<td>HP Journal Editorial Board</td>
<td>Medical Section Subcommittee Meeting</td>
</tr>
<tr>
<td>3:00 PM – 5:00 PM</td>
<td>2:00 PM – 3:00 PM</td>
</tr>
<tr>
<td>Private Dining Room (H)</td>
<td>Room 12 (CC)</td>
</tr>
<tr>
<td>Sunday, 15 July 2018</td>
<td>Section Council</td>
</tr>
<tr>
<td></td>
<td>2:30 PM – 3:30 PM</td>
</tr>
<tr>
<td></td>
<td>Room 17 (CC)</td>
</tr>
<tr>
<td>ABHP Part II Panel</td>
<td>ANSI N13.8 Rad Protection in Uranium Mining</td>
</tr>
<tr>
<td>8:00 AM – 5:00 PM</td>
<td>2:30 PM – 4:00 PM</td>
</tr>
<tr>
<td>Center Street D (H)</td>
<td>Room 13 (CC)</td>
</tr>
<tr>
<td>AAHP Executive Committee</td>
<td>Academic Education Committee</td>
</tr>
<tr>
<td>8:30 AM – 5:00 PM</td>
<td>3:00 PM – 4:30 PM</td>
</tr>
<tr>
<td>Hope A (H)</td>
<td>Room 19 (CC)</td>
</tr>
<tr>
<td>NRRPT</td>
<td>Web Ops</td>
</tr>
<tr>
<td>9:00 AM – 4:00 PM</td>
<td>3:00 PM – 5:00 PM</td>
</tr>
<tr>
<td>Room 10 (CC)</td>
<td>Veterans C (H)</td>
</tr>
<tr>
<td>HPS Board of Directors</td>
<td>Student Support Committee - Meet & Great for HP Connect</td>
</tr>
<tr>
<td>9:00 AM – 5:00 PM</td>
<td>6:00 PM – 7:00 PM</td>
</tr>
<tr>
<td>Center Street A (H)</td>
<td>Room 11 (CC)</td>
</tr>
<tr>
<td>Student/Mentor Reception</td>
<td>Tuesday, 17 July 2018</td>
</tr>
<tr>
<td>6:00 PM – 7:00 PM</td>
<td>Exhibitor Breakfast</td>
</tr>
<tr>
<td>Hope E (H)</td>
<td>8:00 AM – 9:00 AM</td>
</tr>
<tr>
<td>ANSI N13.38 Working Group</td>
<td>Veterans C (H)</td>
</tr>
<tr>
<td>9:00 AM – 11:00 AM</td>
<td>Ask The Editors Meeting</td>
</tr>
<tr>
<td>Room 13 (CC)</td>
<td>9:30 AM – 11:30 AM</td>
</tr>
<tr>
<td>NRRPT</td>
<td>Room 11 (CC)</td>
</tr>
<tr>
<td>9:00 AM – 4:00 PM</td>
<td>Room 10 (CC)</td>
</tr>
</tbody>
</table>
Committee Meetings
Meetings take place at the Huntington Convention Center (CC) or the Hilton Cleveland (H)

Tuesday, 18 July 2018

- **AEC hosts Program Directors Meeting**
 - 12:00 PM – 1:30 PM
 - Room 19 (CC)

- **AAHP Nominating Committee**
 - 12:00 PM – 2:00 PM
 - Room 12 (CC)

- **Int’l Collaborations Committee**
 - 12:00 PM – 2:00 PM
 - Room 17 (CC)

- **AAHP Luncheon**
 - 12:00 PM – 2:30 PM
 - Room 9 (CC)

- **Continuing Education Committee**
 - 12:30 PM – 2:00 PM
 - Veterans A (H)

- **AAHP Title Protection/Prof Recognition Committee**
 - 1:00 PM – 2:00 PM
 - Room 13 (CC)

- **ANSI N13.61 Ambient Air Monitoring**
 - 1:00 PM – 5:00 PM
 - Room 14 (CC)

- **Membership Committee**
 - 2:00 PM – 3:30 PM
 - Room 11 (CC)

- **Government Relations Committee**
 - 3:00 PM – 4:30 PM
 - Room 11 (CC)

- **AIRRS Business Meeting**
 - 4:30 PM – 5:00 PM
 - Room 7 (CC)

- **CSU Alumni Reception**
 - 5:00 PM – 7:00 PM
 - Veterans D (H)

- **Purdue Alumni Reception**
 - 6:00 PM – 7:00 PM
 - Veterans B (H)

Wednesday, 18 July 2018

- **ANSI N13 Revision**
 - 9:00 AM – 5:00 PM
 - Veterans A (H)

- **President’s meetings with BOD designates**
 - 10:30 AM – 5:00 PM
 - Room 13 (CC)

- **AEC/Student Branch Society Support Committee**
 - 12:00 PM – 1:00 PM
 - Room 19 (CC)

- **Standards Committee**
 - 12:30 PM – 2:30 PM
 - Veterans B (H)

- **Reception for Women and Minorities in RP**
 - 1:15 PM – 2:15 PM
 - Room 12 (CC)

- **PAC-2 Meeting**
 - 1:00 PM – 3:00 PM
 - Room 11 (CC)

- **Student Support Committee**
 - 2:00 PM – 3:00 PM
 - Room 9 (CC)

Thursday, 19 July 2018

- **ANSI N13 Revision**
 - 9:00 AM – 5:00 PM
 - Veterans A (H)

- **Program Committee Meeting**
 - 12:30 PM – 2:00 PM
 - Room 9 (CC)

Business Meetings

Tuesday

- **Accelerator Section Business Meeting**
 - 11:20 AM – 12:00 PM
 - Room 6 (CC)

- **AIRRS Business Meeting**
 - 4:30 PM – 5:00 PM
 - Room 7 (CC)

- **Nanotechnology Section Business Meeting**
 - 4:30 PM – 5:00 PM
 - Room 4 (CC)

- **AAHP Business Meeting**
 - 5:15 PM – 6:00 PM
 - Room 1 (CC)

- **Environmental/Radon Section Business Meeting**
 - 5:00 PM – 5:30 PM
 - Room 3 (CC)

Wednesday

- **Homeland Security Section Business Meeting**
 - 4:45 PM – 5:15 PM
 - Room 6 (CC)

- **HPS Business Meeting**
 - 5:30 PM – 6:30 PM
 - Room 1 (CC)

Thursday

- **Military Section Business Meeting**
 - 11:15 AM – 12:15 PM
 - Room 1 (CC)
Summer is coming and we want you to spend more time in the sun and less time in the lab. Make grant season a breeze with an additional $5,000 OFF your next PerkinElmer Liquid Scintillation Counter!

With the fastest and most convenient line of LSC's in the industry, you'll spend less time processing samples and more time enjoying the outdoors. Combined with PerkinElmer's world-class service and support, you'll be on your way to another fantastic summer.

Order value must exceed $50,000. Offer valid only in US and Canada through 9/2/18. Cannot be combined with other discounts.

Stop by booth #219 at Health Physics Society and speak with a PerkinElmer Radiometric Detection Specialist.
SUNDAY

8:00 AM – 10:00 AM

PEP 1-A
CAPP88-PC Version 4.1 Update
Brian Littleton, Ray Wood

PEP 1-B
Status of ANSI N42 RPI and HSI Standards
Morgan Cox

PEP 1-C
RadNet Deployable
Michael Messer

PEP 1-D
Power Reactor Dry Fuel Storage Neutron Measurements - Practical Applications
Patrick LaFrate

PEP 1-E
Non-ionizing Radiation: An Overview of Biological Effects and Exposure Limits
Ben Edwards

PEP 1-F
Radiation Litigation Part I - Understanding the Legal Concepts for Radiation Litigation
Ray Johnson

10:30 AM – 12:30 PM

PEP 2-A
ASTM Standards that Either Directly Impact or Influence Radiation Protection Planning and/or Operations
Ed Walker

PEP 2-B
Integration of Health Physics into Emergency Response
Steve Sugarman

PEP 2-C
A Forgotten Nuclear Accident: Bravo
Caspar Sun

PEP 2-D
NanoTechnology and Radiation Safety
Mark Hoover

PEP 2-E
Laser Safety for Health Physicists
Ben Edwards

PEP 2-F
Radiation Litigation Part II - Preparation as an Expert or Fact Witness and Risk Communication
Ray Johnson

2:00 PM – 4:00 PM

PEP 3-A
Statistics, Uncertainty and Detection Decisions - a Practical Review for Health Physics Practitioners
Doug van Cleef

PEP 3-B
Where Did This Come From? Lessons Learned from High-Routine Bioassay Investigations
Eugene Carbaugh

PEP 3-C
Coping with Natural Disasters and Radioactive Materials
Phil Simpkins

PEP 3-D
Promise and Peril of “Citizen Science” & Strategies for Keeping Your Radiation Safety Program on Course in a Sea of Constant Change
Bob Emery

PEP 3-E
Performing ANSI Z136-based Lazard Hazard Calculations
Ben Edwards

PEP 3-F
Radiation Dosimetry in Nuclear Medicine Therapy
Michael Stabin
Preliminary Scientific Program

Presenter’s name is asterisked (*) if other than first author. All sessions take place in the Huntington Convention Center.

This meeting has applied to CAMPEP for approval of 25 MPCEC hours.

MONDAY

7:15 AM – 8:15 AM

CEL-1 Room 3
Modeling Data for Radiological Impact Assessment: Humans and Biota
Stephanie Bush-Goddard, Tanya Oxenberg
United States Nuclear Regulatory Commission

CEL-2 Room 4
Retired but not Yet Green Field
Robert Miltenberger

8:30 AM – 12:30 PM Global Center Ballroom AB

MAM-A: Plenary Session: Health Physics and the Realm of Low Dose Radiation
Chair: Eric Abelquist

8:30 AM MAM-A.1
Opening Remarks
Abelquist E
HPS President and ORAU

8:40 AM MAM-A.2
Welcome to Cleveland
The Honorable Frank Jackson
Cleveland Mayor

8:45 AM MAM-A.3
What Have Inappropriate Radiation Limits Done To Our Nuclear Waste Disposal Program?
Conca J
UFA Ventures, Inc.

9:30 AM MAM-A.4
Prudence and the Hidden Burden of Conservatism
Coates R
IRPA

10:15 AM Exhibit Hall
BREAK

10:35 AM MAM-A.5
Low Dose Radiation Biology, Past, Present and Future
Brooks AL
Washington State University

11:20 AM MAM-A.6
Latest Development And Applications Of The Multi-scale Chinese Reference Phantoms
Tsinghua University, Nuctech Company Limited

12:05 AM MAM-A.7
Panel Discussion

12:15 PM – 2:15 PM

PEP M-1 Room 3
So now you are the RSO: Elements of an Effective Radiation Safety Program
Thomas Morgan

PEP M-2 Room 4
Ethical Decision Making with Link to Safety Culture & Radiation Safety’s Role in Mitigating Insider Security Risks
Janet Gutierrez, Bob Emery
1:00 PM – 3:00 PM

P: Poster Session

Accelerator

P.2 Preliminary Study on the Dose Estimation for Non-destructive Imaging System Based On Laser-wavefield Acceleration
Wei SY, Qiu R, Yang B, Ma C, Zhang H, Wu Z, Li CY, Li JL
Tsinghua University, China Academy of Engineering Physics

Emergency Response

P.3 U.S. Environmental Protection Agency’s Environmental Sampling & Analytical Methods Program
Hall KM
U.S. Environmental Protection Agency

P.4 Initial Comparison of Fallout Modeling Codes within Fallout Planning Tool and Specialized Hazard Assessment Response Capability
Cook KM
Oak Ridge National Lab

P.5 Effects of Elevation and Humidity on External Contamination Screening Criteria
Samuels CE, Ansari AS, Hertel NE
Georgia Institute of Technology, Centers for Disease Control and Prevention

Environmental Monitoring

P.6 Quantitation of Radioactivity in Environmental Samples using Eight 11 cm x 42.5 cm x 5.5 cm NaI(Tl) Detectors
Shubayr NA, Miller JM, Seekamp J, Di Fulvio A, Xiao J, Kearfott KJ
University of Michigan

P.7 Preliminary Evaluation of a Gamma-ray Spectral Signature Analysis Technique for 11 cm x 42.5 cm x 5.5 cm NaI(Tl) Detectors in Fixed Locations with a Well-Characterized Background
University of Michigan, Tsinghua University

P.8 A Simple Mathematical Model for Predicting the Radon Removal Efficiency of an Activated Charcoal System for Radon Mitigation
Zhou Q, Zhao G, Xiao D, Qiu S, Kearfott KJ
University of Michigan, University of South China

P.9 Application of US EPA SWMM 5 to a Radio-Nuclide-Contaminated Urban Catchment with Low-Impact Developments
Ng GM, Higley KA
Oregon State University

P.10 Environmental Natural Radioactivity in Soils Collected Near a coal-fired Power Plant
Alcorn State University, University of Kentucky

P.11 Studies on Isotopic Transfer Factor and Resultant Dose from Selected Tobacco Leaves
Alcorn State University, University of Kentucky

P.12 Radium Levels in Sludge Samples from Water Treatment Facilities
Alcorn State University

P.13 Radiometric Studies on Organic Fertilizers
Queen K, Billa J, Adzanu S, Akuana B, Snyder M, Ankrah M, Adjaye J
Alcorn State University

P.14 Development and Characterization of Extractive Scintillating Resins for Determination of Ultra-Low-Level Plutonium in Aquatic Systems
Fullmer WK, Seliman A, Husson SM, Powell BA, DeVol TA
Clemson University

P.15 Determination of Bioavailability of Radiocesium and Plutonium in the Fukushima Exclusion Zone Using a Sequential Extraction Technique
McNabb IM, Sudowe R*
Colorado State University

P.16 Radon Concentrations in Ground Water from Selected Counties of Mississippi
Alcorn State University

P.17 Ecological and Occupational Hazards Due to Natural Radioactivity and Heavy Metals in Soils of Some Selected Mining Sites in Nigeria
Dike CG, Oladele BO*, Olubi OE, Aderibigbe A
Federal University of Technology Akure, Achievers University Owo, University of Ibadan
P.19 Geo-Spatial Analysis of Radon and Gamma Dose Rates in Indoor/Outdoor environment of Muzaffarabad City
Rafique M, Abbasi S, Kearfott KJ, Khan Tareen AD, Rahman SL
University of Azad Jammu and Kashmir, University of Michigan, Nuclear Medicine, Oncology and Radiotherapy Institute

External Dosimetry

P.20 Application of Traditional Type Test Standards to Non-Traditional Dosimetry: Using IEC 62387-2012 to Type Test the Mirion Instadose Products
Baca MA
Mirion Technologies, Inc.

P.21 Buildup Factor and Linear Attenuation Coefficient of MCP-69 alloy.
Maqbool M, Islam MS, Clark J
University of Alabama at Birmingham, Ball State University

P.22 Characteristic of a PuBe Neutron Source
Willey AH, DeVol TA, Martinez NE
Clemson University

P.23 Comparison of Monoenergetic Photon Organ Dose Rate Coefficients for Male and Female Pediatric Stylized and Voxel Phantoms Submerged in Air
Dewji SA, Bales KE*, Griffin K, Lee C, Hiller MM
Oak Ridge National Laboratory, University of Tennessee, National Institute of Health, Independent Contributor

P.24 Management of Large Numbers of Al2O3:C Optically Stimulated Luminescent Dosimeters for a Non-automated System
Trimas DJ, Golduber RM, Liu K, Abraham SA, Latosz LV, Mapes JL, Kearfott KJ
University of Michigan

P.25 Calibration and Statistical Performance of Al2O3:C Optically Stimulated Luminescent Dosimeters With and Without Annealing
Latosz LV, Mapes JL, Liu K*, Abraham SA, Golduber RM, Miller JM, Trimas DJ, Kearfott KJ
University of Michigan

Historical

P.26 World List of Early Nuclear Reactors, Africa and Asia – A Philatelic Look at Health Physics History
Johnston TP
National Institute of Standards & Technology

P.27 World List of Early Nuclear Reactors, Europe – A Philatelic Look at Health Physics History
Johnston TP
NIST

P.28 World List of Early Nuclear Reactors, the Americas and Antarctica – A Philatelic Look at Health Physics History
Johnston TP
NIST

P.29 Space Applications with Radiation Sources and Detectors, Part 1
Johnston TP
National Institute of Standards & Technology

P.30 Space Applications with Radiation Sources and Detectors, Part 2
Johnston TP
NIST

Instrumentation

P.31 Student Investigation of a New Device for Creating a Digital Library with Standard HP Survey Instruments
Krout CL, Simpson DR, Gunter RJ, Bass N, Guernsey AM, Karchner MA
Bloomsburg University, CHP Consultants

P.32 Development of High Efficiency of Multi-element Gaseous Neutron Dosimeter
Kim YE, Byun SH
McMaster University

Internal Dosimetry

P.33 Reassessment of an Intake of Insoluble Plutonium
LaBone TR, Hyman SD, Eckerman KF
MJW Corporation, Savannah River Nuclear Solutions, Oak Ridge National Laboratory (retired)

P.34 Biokinetic Modeling for Rats: Americium-241 Inhalation Exposure
Swanson JL, Brey RR, Miller G, Melo D, Weber WM, Doyle-Eisele M
Idaho State University; Melohill Technology, LLC; Lovelace Respiratory Research Institute

P.35 Development of 3D Printed Age-Specific Thyroid Phantoms for In-Vivo Measurement after Accidental Incorporation
Beaumont T, Caldeira Ideias P, Broglio D, Franck D*
IRSN

Medical Dosimetry

Ford JS, Jorgensen TJ, Smith DA, Kim AY, Benevides*
Georgetown University
P.37 Fast Monte Carlo Simulation Applied in Brachytherapy
Hu AK, Qiu R, Wu Z, Li CY, Zhang H, Li JL
Tsinghua University, Beijing, China

Medical Health Physics

P.38 Y-90 Shielding in the Nuclear Medicine Hot Lab
Rayadurgam P, Miller A
Cleveland Clinic

P.39 Design of a Beam Shaping Assembly for Boron Neutron Capture Therapy using a D-D Neutron Generator
Liu K, Beyer KA, Zhang Y, Latosz LV, Clarke SD, DiFulvio A, Pozzi SA, Kearfott KJ
University of Michigan

P.40 Comparison of the Responses of Common Thermoluminescent and Optically Stimulated Luminescent Dosimeters in a Humanoid Phantom
Liu K, Latosz LV, Abraham SA, Trimas DJ, Golduber RM, Kearfott KJ
University of Michigan

P.41 Monte Carlo Simulations of Elemental Imaging using the Neutron Associated Particle Technique
Abel MR, Nie LH
Purdue University

P.42 Innovative Use of Radioactive Seeds as an Alternative to Wire Localization for Surgery of Non-Palpable Breast Lesions
Kitich A, Hargreaves J, Kroger L*, Mayadev J, Sauder C
UCD Health

P.43 Optimization of Adult Abdominal Computed Tomography Protocol at Medstar Georgetown University Hospital Using Iterative Reconstruction Algorithm Levels
Ioannidou S, Mitchell CA, Jorgensen TJ, Benevides L, Smith DA
University of Florida, Georgetown University

P.44 Radiation Dose Enhancement of Bismuth Nanoparticles in a Breast Cancer Phantom Model
Gray JM, Xu XG
Rensselaer Polytechnic Institute

P.45 Radiation Dose Tracking from X-Ray Procedures: Where Are We and Where Should We Be?
Borras C, Beckfield F, Elder D, Kroger L, Lemieux BP, Noska MA, Thomas JA
Medical HP Section

P.46 The Alpha Advantage: Supporting Bone Marrow Ablation Research Using At-211
Sober JC, Zahniser SG
Fred Hutchinson Cancer Research Center

P.47 State of Radiation Protection Practice by Radiologic Technologists at Saudi Pediatric Hospitals
Almashkhi AM, Sayed MG
Asir Children’s Hospital, CSUDH

Gamma Attenuation of Military Vehicles
Burns CD
Georgia Institute of Technology

Radiation Effects

P.49 Understanding the Radiation Induced Bystander Effect (RIBE)
Mensah C, Ganguly K, Mollett MW, Seagraves DT, Gleasner CD
Los Alamos National Laboratory

P.50 Detection of Soil Radon Anomalies for Earthquake Forecasting using Machine Learning Techniques
Khan Tareen AD, Khawaja A, Kearfott KJ, Rafique M, Ahmad Nadeem MS, Iqbal T, Rahman SU
University of Azad Jammu and Kashmir, Quaid e Azam University, University of Michigan, Nuclear Medicine, Oncology and Radiotherapy Institute

Radiation Safety Officers

P.51 Implementation of a Radiation Safety Program in a Medical Device Company: The Advantages of a Corporate-Wide and Global Program
Riopel AM
Stryker, Inc.

P.52 Evaluation of hypothetical Actinium-225 Needle-Stick Incidents and Appropriate Prevention Methods
Gibbons WR, Budzevich MM, Weaver AS*
University of South Florida, Moffitt Cancer Center

Radiobiology - Biological Response

P.53 Single Celled Organisms and Their Usefulness in Studying Dose Response Relationships
Turner AJ, Brey RR
Idaho State University

P.54 Biological Effects of Melanin in the Intact and Irradiated Organism
Bulina TM, Ivanov AA, Andrianova IE
State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

P.55 Accumulation of 90Sr and 137Cs by Higher Aquatic Vegetation of the Reservoir 10 of the Techa Reservoir Cascade
Dyusenova RD, Tryapitsina GA
Urals Research Center for Radiation Medicine; Chelyabinsk State University
P.56 Association Between Immune System’s Genes Polymorphisms and Immunity Parameters in Persons Exposed to Chronic Radiation Exposure
Kotikova AI, Blinova EA, Akleyev AA
Ural Research Center for Radiation Medicine, FMBA of Russia, South Ural State Medical University

P.57 Influence of Chronic Radiation Exposure the Hematopoiesis in the Head Kidney of Roach (Rutilus rutilus) in In Situ Experiments
Tiukhai MV, Pryakhin EA, Akleyev AV
Ural Research Center for Radiation Medicine (URCRM), Chelyabinsk, Russia

3:00 PM – 5:15 PM Room 1

MPM-A: Medical Health Physics, Part I
Co-chairs: Mike Stabin, James Menge

3:00 PM MPM-A.1
New RADAR Resources for the Practicing Health Physicist
Stabin MG
Vanderbilt University

3:15 PM MPM-A.2
Approved Method for Domestic Production of Mo-99
Mohaupt TH
NorthStar Medical Radioisotopes

3:30 PM MPM-A.3
Occupational Dose for Medical Staff during the Preparation and Administration of Therapy Treatments of Iodine-131 metaiodobenzylguanidine
Barnes JA, de la Guardia M, Ripley E
Cook Children’s Medical Center, Medical Physics Consultants

3:45 PM MPM-A.4
Lutathera Radiopharmaceutical Therapy Experience at an NCI Accredited Cancer Center
Harvey RP
Roswell Park Cancer Institute

4:00 PM MPM-A.5
Radiation Safety Reviews of Patient Skin Dose - Differentiating Controllable and Non-Controllable Variables
Nelson KL, Pavicek W
Mayo Clinic Arizona

4:15 PM MPM-A.6
Quality Management of Interventional Fluoroscopy (IVF) Programs to Reduce Radiation Risks to Patients and Staff
Menge JP, Dielman R
SME Associates LLC, Radiation Safety Advisors

4:30 PM MPM-A.7
Improving Radiation Protection of Workers and Patients in Interventional Cardiology
Gilley D, Pinak M*
IAEA

4:45 PM MPM-A.8
Occupational Radiation Protection of Radiologists and Technicians Performing Fluoroscopically Guided Interventional Procedures – An Investigation of Posture and Movement Effects
Mao L, Liu T, Gao Y, Dauer LT, Caracappa PF, Xu XG
Rensselaer Polytechnic Institute, Memorial Sloan Kettering Cancer Center

5:00 PM MPM-A.9
Effect of Body Size Dependent Dose Coefficients in Fluoroscopically Guided Interventional Procedures (FGIP) to the United States Radiologic Technologists (USRT) Cohort
Chang LA, Borrego D, Lee C
Houston Methodist Hospital, National Cancer Institute

3:00 PM – 4:15 PM Room 3

MPM-B: Special Session: Measurement of Ac-227 in the Workplace
Chair: Gorvind Rao

3:00 PM MPM-B.1
Radiological Protection Challenges in Supporting Actinium-227 Research at the Oak Ridge National Laboratory
Stafford MW
Oak Ridge National Laboratory

3:15 PM MPM-B.2
Radon Compensation and Source-term Considerations When Performing Particulate Air Monitoring in the Presence of Actinium-227
Reaves KL
UT - Battelle, ORNL

3:30 PM MPM-B.3
The Challenge of Providing Bioassay Monitoring for the Most Restrictive Radionuclide Listed in Appendix A of 10 CFR 835 - Purified Actinium-227
McLaughlin DA, Rao GR
ORNL

3:45 PM MPM-B.4
Ac-227 Analysis for exposure Assessment: Handling Progeny, Deconvolution, and Low Level Counting
Stavola AJ, Kurosaki H, McLaughlin DA, Rao GR
UT-Battelle, ORNL
MONDAY

4:00 PM MPM-B.5
Lessons Learned from an Actinium-227 Contamination Incident at the Oak Ridge National Laboratory
Stafford MW, McKinney JW
Oak Ridge National Laboratory

2:30 PM – 5:10 PM Room 4
MPM-C: Special Session: International Collaboration Committee
Chair: Alex Brandl

2:30 PM MPM-C.1
ICRP’s Role in Global Harmonisation of Radiological Protection Standards, Legislation, and Practice: 90 Years of Recommendations
Clement CH
International Commission on Radiological Protection

2:55 PM MPM-C.2
IRPA’s Role in the Harmonisation of Radiation Protection Standards
Coates R
IRPA

3:20 PM MPM-C.3
Radiation Protection - International Guidance and Application in Practice
Miroslav Pinak MP
IAEA

3:45 PM MPM-C.4
Harmonization of Radiation Protection in Europe
Magnusson SM
Icelandic Radiation Safety Authority

4:10 PM MPM-C.5
A Federal Agency’s Perspective on Harmonization
Boyd MA
U.S. EPA

4:30 PM MPM-C.6
Harmonization of Radiation Protection Rules and Regulations at the State Level
McBurney RE
Conference of Radiation Control Program Directors

4:50 PM MPM-C.7
Management of Exposure to Ionizing Radiation – NCRP Recommendations for Radiation Protection 2018
Cool DA, Kase KR
Electric Power Research Institute, National Council on Radiation Protection & Measurements

3:00 PM – 4:15 PM Room 5
MPM-D: Radiation Biology
Co-chairs: Ron Goans, Joshua Hayes

3:00 PM MPM-D.1
Power Function Retention of Radionuclides in a Wound
Goans RE
MJW Corporation

3:15 PM MPM-D.2
The Pseudo Pelger-Huet Anomaly as a Potential Biodosimeter for Chronic Low Dose Radiation Exposure of Mammalian Species within the Fukushima Daichi Exclusion Zone
Hayes J, Pederson S, Rollert M, Thomas H, Bailey S, Okuda K, Johnson T
Colorado State University, Fukushima University

3:30 PM MPM-D.3
Comparative Analysis Of The Effect Of Low Doses Of Ionizing Radiation On Human Mesenchymal Stem Cells
Usupzhanova DY, Astrelina TA, Nikitina VA, Nugis YV, Suchkova YB, Kobzeva IV, Bruchukov VA, Rastorgueva AA, Bushmanov AI, Samoilov AS
State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

3:45 PM MPM-D.4
Gene Expression MDM2, BCL-2, OGG1 and Indicators of Immune System in Persons Exposed to Chronic Radiation
Nikiforov VS, Blinova EA, Akleyev AA
Urals Research Center for Radiation Medicine, Chelyabinsk State University, South Ural State Medical University

4:00 PM MPM-D.5
Assessment of Chromosomal Aberrations by Using Dicentric Chromosome Assay in two Selected Populations in Sri Lanka
Weerakkody TL, Warnakulasuriya TD, Dabarera MD, Williams HS, Rathnayake NP, Wickremasinghe AR
Sri Lanka Atomic Energy Board, University of Kelaniya
MONDAY

2:30 PM – 5:15 PM Room 6

MPM-E: Special Session: Rad Air NESHAPs
Co-chairs: Matthew Barnett, Colleen Ostrowski

2:30 PM MPM-E.1
U.S. Environmental Protection Agency Update on Radionuclide NESHAPs
Walsh JP
U.S. EPA

2:45 PM MPM-E.2
US Department of Energy Subpart H Report
Ostrowski CN, Snyder SF*
US Department of Energy, Pacific Northwest National Laboratory

3:00 PM MPM-E.3
Update on Standards and Technical Reports for Monitoring Radioactive Air Emissions
Glissmeyer JA, Parkin JM, Blunt B, Barnett JM
Glissmeyer Environmental LLC and HI-Q Environmental Products, National Physical Laboratory, Blunt Consulting LLC, Pacific Northwest National Laboratory

3:15 PM MPM-E.4
U.S. Environmental Protection Agency Update on Compliance Codes
Littleton B
US Environmental Protection Agency

3:30 PM MPM-E.5
Age-Dependent Dose Calculations Using CAP-88 PC Version 4
Ralston LG, Nelson NS
U.S. Environmental Protection Agency

3:45 PM MPM-E.6
Terrain Effects on Dose Estimates from Airborne Emissions
Birdwell KR, Scofield PA
UT-Battelle ORNL

4:00 PM MPM-E.7
Open-air Demolition: Validation of EPA Approved Alternative Method for Emission Estimation
Blunt BC, Fox JR, Krentz MP
Blunt Consulting, CH2M Hill BWXT West Valley, DOE - West Valley Demonstration Project

[HI-Q ENVIRONMENTAL PRODUCTS COMPANY, INC.]
Air Sampling & Radiation Monitoring Equipment, Systems & Accessories

- Continuous Duty High & Low Volume Air Samplers
- ANSI N13.1-2011 Stack Sampling Location Qualification Testing & System Design
- Mobile Cart Air Samplers
- Health Physics & Radiation Measurement Instrumentation

Our product line also includes:
- Calibration & Repair Services
- Silver Zeolite Cartridges
- Filter Paper
- Filter Holders (In-Line, Open Faced, Combination)
- Outdoor Ambient Air Samplers & Shelters
- Custom Product & System Design
- TEDA Impregnated Carbon Cartridges

7386 Trade Street | San Diego, CA 92121
Phone: 858-549-2820 | Fax: 858-549-9657
Email: info@HI-Q.net | Internet: www.HI-Q.net
4:15 PM
PM-E.8
MONDAY
Performance of Shrouded Probes at the Waste Isolation Pilot Plant Following the 2014 Accidental Radiological Release
Ward AL, Thakur P*, Hardy R
US-DOE, CEMRC

4:30 PM
PM-E.9
Interim Status on 10-year Nuclear Grade HEPA Filer Lifetime Evaluation
Barnett JM, Brown DM, Rishel JP, McDonald KM, Bliss M
PNNL

5:00 PM
PM-E.10
Questions & Answers

2:30 PM – 5:15 PM
Room 7

MPM-F: Exhibitors of the HPS: A Special Discussion on Products and Services

Chair: Dustin Miller

2:30 PM
MPM-F.1
Chase Brokerage and Remediation Services
Miller DG
Chase Environmental Group

2:45 PM
MPM-F.2
Hopewell Designs, Inc.
Mickum GS
Hopewell Designs

3:00 PM
MPM-F.3
Release of NuVISION, the Next Generation of Gamma Cameras
Rothan D
NUVIA

3:15 PM
MPM-F.4
CHP Consultants introduces the Counts.Pro Survey Data Collection and Retention System
Gunter RJ, Bass NK
CHP Consultants

3:30 PM
MPM-F.6
ODYSSEY – A Modern Management System for Radiation Safety Programs and Personnel Dosimetry
Ramsay B, Ramsay A, Roller D
Versant Medical Physics

3:45 PM
MPM-F.7
Real-Time Gamma Camera
Jokerst T
Mirion Technologies

4:00 PM
MPM-F.8
Mirion’s RadKnight UAVs
Kost J
Mirion Technologies

4:15 PM
MPM-F.9
Mirion’s Instadose+
Potuck V
Mirion Technologies

4:30 PM
MPM-F.10
The Off-Site Source Recovery Program
Feldman A, Taplin T
LANL, NNSA

4:45 PM
MPM-F.11
Integrating Hardware Simulators and Virtual Reality in Radiation Protection Training to Elevate Hands-on Learning Activities
Podobnik M
Teletrix

5:00 PM
MPM-F.12
Spectroscopic Noble Gas Stack Monitor with Continuous Unattended Operation and Analysis
Mirion Technologies (Canberra) Inc.
TUESDAY

6:45 AM – 7:45 AM

CEL-3
Room 1

Channeling Stephen Hawking: How Lessons from the Renowned Astrophysicist can inform and inspire Great Health Physics for the Future
Mark Hoover

8:00 AM – 11:45 AM

Room 1

TAM-A: Special Session: AAHP - Potential Health Effects of Low Dose Radiation and The Role of Radiation Protection Professionals
Co-chairs: Kyle Kleinhans, Armin Ansari

8:00 AM
TAM-A.0
Introduction - Why Is This Important?
Kleinhans K, Ansari A

8:15 AM
TAM-A.1
Radiation Epidemiology and Low Dose Health Effects
Boice JD
NCRP; Vanderbilt

8:45 AM
TAM-A.2
Estimating Cancer Risks at Low Doses and Dose Rates: Lessons from Dr. Land
Pawel DJ
U.S. Environmental Protection Agency

9:15 AM
TAM-A.3
What Does Radiation Biology Tell Us about Potential Health Effects at Low Dose and Low Dose Rates
Azzam E
RUTGERS New Jersey Medical School

9:45 AM
TAM-A.4
Enhancing Low Dose Risk Assessment using Mechanistic Mathematical Models of Radiation Effects
Shuryak I
Columbia University Medical Center

10:15 AM
TAM-A.5
Low-Dose Radiation: Interagency Collaboration on Planning Research Could Improve Information on Health Effects
Neumann J, Cook J, Chan A, Ostrander J
Government Accountability Office

11:15 AM
TAM-A.6
Translating Science to Recommendations - NCRP CC-1
Cool DA
Electric Power Research Institute

8:00 AM – 12:00 PM

Room 3

TAM-B: Environment and Radon Section: Modeling Special Session
Chair: Philip Egidi

8:30 AM
TAM-B.1
International Engagement in the Revision of the IAEA Safety Standard on Source, Environmental and Individual Monitoring for Radiation Protection
Yankovich TL
IAEA

9:00 AM
TAM-B.2
The Use of Environmental Radiation Models in Regulatory Decision-Making
Walsh JP
U.S. EPA

9:30 AM
TAM-B.3
The Importance of Deposition Velocity in Modeling Ground Contamination for Emergency Response
Whicker JJ, McNaughton M
Los Alamos Nat. Lab.

10:00 AM
Exhibit Hall
BREAK

10:30 AM
TAM-B.4
A Review of Recent Organically Bound Tritium Studies and Their Impact on Environmental Dose Assessment Models
Manglass L, Martinez N
Clemson University

11:00 AM
TAM-B.5
Heuristics and Machine Learning Approaches to Radiation Protection
Gomez Fernandez ME, Higley KA, Tokuhiro A
Oregon State University, University of Ontario Institute of Technology

11:30 AM
TAM-B.6
Sectional 3D Model Development for the Reference Tree
Condon CA, Higley KA
Oregon State University
8:00 AM – 12:00 PM Room 4

TAM-C: Detection and Measurement
Co-chairs: Mark Hogue, Ed Walker

8:00 AM TAM-C.1
Haight Ashbury to Health Physics – A Long Strange Trip
Kephart GS, Mahathy JM*, Long M, Adams WC
ORAU, URS/CHM2, Strata-G, LLC

8:15 AM TAM-C.2
Walker EE
Consultant

8:30 AM TAM-C.3
Calibration of Tissue Equivalent Organic Scintillators in a Facility Calibrated for Photon Exposure
Hogue MG, Hadlock DJ, Taylor GA
Savannah River Nuclear Solutions

8:45 AM TAM-C.4
Development of Novel Nano-Fiber Optic Detector Technology For Real-time Detection of Iodine-131 Beta Energy
Hyatt SP, Moore BM, Petry NA, Therien MJ, Yoshizumi TT
Duke University

9:00 AM TAM-C.5
Synthesis and Scintillation Properties of Nano BaSiF6, BaF2, and CaF2 Scintillators
Davis JE, Gibin G, Simpson MD, Mobley ZR, Ilia D, Luo Z
ORAU, Fayetteville State University

9:15 AM TAM-C.6
Preliminary Design of a Prototype Optically Stimulated Luminescent Dosimeter Reader for Material Characterization
Abraham SA, Wang CY, Frank SJ, Seekamp J, Kearfott KJ
University of Michigan

9:30 AM TAM-C.7
Intercomparison of Commercially Available Radon Measurement Devices for Consumer, Mitigator and Research Applications
Carmona M, Shubayr NA, Zhou Q, Kearfott KJ
University of Michigan

9:45 AM Exhibit Hall

10:15 AM TAM-C.8
A Robotic Arm for the Automation of an Optically Stimulated Luminescent Dosimeter Reader
Gandhi BR, Chung LK, Trimas DJ, Kearfott KJ
University of Michigan

10:30 AM TAM-C.9
The Effects of Radiation and Emitted Light Transport on the Positional Response of 11 cm x 42.5 cm x 5.5 cm NaI(Tl) Detectors
Noey JD, Xiao J, Di Fulvio A, Carmona MA, El-/amir IN, Liu K,
Seekamp J, Sosa CS, Trimos DJ, Kearfott KJ
University of Michigan

10:45 AM TAM-C.10
Design of an Extremely Sensitive Large Volume Gamma-Ray Spectrometer for Environmental Sample Screening
Seekamp J, Noey JD, Miller JM, Shubayr NA, Chung LK, DiFulvio A,
Wong CY, Xiao J, Kearfott K
University of Michigan

11:00 AM TAM-C.11
Use of Autoradiography for the Visualization and Quantification of Alpha Emitting Radionuclides on Air Filters
Sorcic AK, Sudowe R
Colorado State University

11:15 AM TAM-C.12
Three Examples of On-Line Continuous Quantitative Gamma Spectroscopy of Primary Coolant at Nuclear Power Plants
Bronson FL
Mirion Technologies - Canberra

11:30 AM TAM-C.13
Three-Dimensional Position-Sensitive Pixelated CdZnTe Detector Technology for Isotope Detection, Localization, Quantification, and Trending
Wang W, Boucher YA, Kaye WR, Wahl CG, Jaworski JM, Zhang F,
Yang H, Matthews T, Moran KF, Tefft DP
H3D, Inc.

11:45 AM TAM-C.14
Designing and Constructing of a Survey meter with two gamma detectors to detect and Identify Radioisotopes
Alghamdi AS, Abuhoza AA, Almalki SA, Alshehri MA, Alshuwaymi AS,
Almudayfir IA
Nuclear Science Research Institute, KACST, National Center for Radiation Detector Technology, KACST, National Center for Nuclear Technology, KACST
8:00 AM – 12:00 PM Room 5

TAM-D: Special Session: Medical Health Physics
Co-chairs: Kendall Berry, Deirdre Elder

8:00 AM
TAM-D.1
Radiation Safety Considerations for Brachytherapy Using Pd-103 CivaSheet™
Berry KE, Edwards B, Kendrick J
Fox Chase Cancer Center

8:15 AM
TAM-D.2
Lutetium-177 Therapies and Health Physics Challenges
Elder DH
University of Colorado Hospital

8:45 AM
TAM-D.3
Radiation Safety for Administration of Iodine-131 Monoclonal Antibody
Konerth S, Fisher D, Durrack L
Versant Physics

9:00 AM
TAM-D.4
Estimation of Skyshine Neutron Dose from LCLS-II Operation at SLAC National Accelerator Laboratory
Liang TT, Liu JC, Santana Leitner M
SLAC National Accelerator Laboratory

9:15 AM
TAM-D.5
A Review of Dosimetrically Determined Doses of I-131 NaI for Thyroid Cancer
Lemieux B, Ain K
UK HealthCare

9:45 AM
TAM-D.6
Planning and Execution of Radiological Work for Spallation Neutron Source Inner Reflector Plug Changeout
Schwahn SO, Elam CL, Foster ND, Stephens GM, Byers SA
Oak Ridge National Laboratory

10:00 AM
TAM-D.7
Radiological Characterization and Shielding Studies for The X-ray Produced in Ultraintense Laser–Solid Interaction
Tsinghua University, China Academy of Engineering Physics

10:15 AM
TAM-D.8
Radiological Characterization and Shielding Studies for The X-ray Produced in Ultraintense Laser–Solid Interaction
Tsinghua University, China Academy of Engineering Physics

10:30 AM
TAM-D.9
Radiological Characterization and Shielding Studies for The X-ray Produced in Ultraintense Laser–Solid Interaction
Tsinghua University, China Academy of Engineering Physics

10:45 AM
TAM-D.10
Design and Fabrication of SCVD Diamond as a Radiation Detector and Vacuum Window
Tong X, Thompson J, Byun SH
McMaster University

11:00 AM
TAM-D.11
Accelerator Section Business Meeting

8:00 AM – 12:00 PM Room 6

TAM-E: Special Session: Accelerator
Chair: Vaclav Vylet

8:00 AM
TAM-E.1
X-Ray Sterilization With Superconducting Electron Linear Accelerators
Bakken AC, Grimm AK, Mamtimin M, Starovoitova VN, Boulware CH, Grimm TL
Niowave, Inc.

8:15 AM
TAM-E.2
Irradiation of LED Lamps to High Levels of Radiation
Campos Torres M, Santana M, Fields C
SLAC National Accelerator Laboratory

8:30 AM
TAM-E.3
Use of a Tritium Target at Jefferson Lab
Welch KB
Thomas Jefferson National Accelerator Facility

8:45 AM
TAM-E.4
iOS Application for Dosimeter Exchange
Price G, Xiao S*
University of California-Riverside, SLAC Accelerator Laboratory

9:00 AM
TAM-E.5
Estimation of Skyshine Neutron Dose from LCLS-II Operation at SLAC National Accelerator Laboratory
Liang TT, Liu JC, Santana Leitner M
SLAC National Accelerator Laboratory

9:15 AM
TAM-E.6
A Review of Dosimetrically Determined Doses of I-131 NaI for Thyroid Cancer
Lemieux B, Ain K
UK HealthCare

9:45 AM
TAM-E.7
Operational Health Physics Applications in Support of the Isotope Production Facility Pertaining to the Production of Radioisotopes for Nuclear Medicine Purposes
Overbay LA, Smith EA, Bliss JL
Los Alamos National Laboratory

10:00 AM
TAM-E.8
Planning and Execution of Radiological Work for Spallation Neutron Source Inner Reflector Plug Changeout
Schwahn SO, Elam CL, Foster ND, Stephens GM, Byers SA
Oak Ridge National Laboratory

10:15 AM
TAM-E.9
Radiological Characterization and Shielding Studies for The X-ray Produced in Ultraintense Laser–Solid Interaction
Tsinghua University, China Academy of Engineering Physics

10:30 AM
TAM-E.10
Radiological Characterization and Shielding Studies for The X-ray Produced in Ultraintense Laser–Solid Interaction
Tsinghua University, China Academy of Engineering Physics

24 Health Physics Society 63rd Annual Meeting
Preliminary Program

TUESDAY

8:00 AM – 12:00 PM
Room 7

TAM-F: Special Session: Non-Military Radium
Co-chairs: Todd Jackson, Chris Grossman

8:00 AM
U.S. Nuclear Regulatory Commission Staff Efforts for Addressing Decommissioning Issues at Non-Licensed Radium Sites Unaffiliated with the Military
U.S. Nuclear Regulatory Commission

8:20 AM
Radium Program Survey Summaries
King DA
Oak Ridge Associated Universities

8:50 AM
Confirmatory Radiation Surveys of an Apartment Building Located in a Former Radium Clock Dial Painting Factory
Jackson TJ, Powell RJ
USNRC, CHP

9:10 AM
Technical Basis for Dose Assessments for Potential Exposures to Discrete Sources of Radium-226 and Associated Contamination
Grossman CJ, King DA
U.S. Nuclear Regulatory Commission, Oak Ridge Associated Universities

9:30 AM
Exhibit Hall

10:00 AM
Radium Program Survey Strategy
King DA
Oak Ridge Associated Universities

10:30 AM
Controlling and Monitoring Ongoing Public Radiation Exposures at an Unlicensed Former Radium Clock Dial-Painting Factory
Jackson TJ
USNRC

11:00 AM
Experience in Implementing the USNRC Radium Program at Unlicensed Sites with Confirmed Residual Ra-226 Contamination
Roberts MC
USNRC, Region I

11:30 AM
TAM-F.8
Cleanup of a Former Watch Manufacturing Facility
Norton MD
DDES, LLC

12:15 PM – 2:15 PM

PEP T-1
Room 1
Radiation Shielding - A Lost Art?
Edward Waller

PEP T-2
Room 3
Radiological and Nuclear Terrorism Tools; Customize for your Community
Brooke Buddemeier
Lawrence Livermore National Laboratory

2:30 PM – 5:15 PM
Room 1

TPM-A: Special Session: AAHP - Potential Health Effects of Low Dose Radiation and The Role of Radiation Protection Professionals
Co-chairs: Kyle Kleinhans, Armin Ansari

2:00 PM
Low Dose Radiation Research and Implementation of Radiation Protection Policy at the Department of Energy
Favret DJ, Metting NF, Dillard JR, Al-Nabulsi I, Wallo A
US Department of Energy

2:45 PM
Studies of Low Dose Health Effects Inform EPA Regulations
Boyd MA
U.S. EPA

3:45 PM
The U.S. Nuclear Regulatory Commission Radiation Protection Policy and Opportunities for the Future
Jones CG
US Nuclear Regulatory Commission

4:00 PM
INPO Approach for Maintaining Low Worker Dose
Mitchell B
INPO

4:30 PM
State Radiological & Toxicological Risk Assessment and the Linear No-Threshold Perspective
Irwin WE
Vermont Department of Health
TUESDAY

5:00 PM
The Role of Radiation Protection Professionals
Ansari A
Centers for Disease Control and Prevention

5:15 PM
AAHP Business Meeting

2:30 PM – 5:00 PM Room 4

TPM-C: Special Session: Nanotechnology and Radiation Protection
Chair: Mark Hoover

2:30 PM TPM-C.1
Nanotechnology and Radiation Protection: HPS Nanotechnology Section Activities and Opportunities
Hoover MD, Marceau-Day ML, Cash LJ, Davis J, Hay T, Holiday S, Walker II LS

3:00 PM TPM-C.2
Challenges Regulating Radioactive Nanoparticles from a Regulator’s Point of View
Hay TR
Washington Department of Health Radiation Protection

3:20 PM Exhibit Hall
BREAK

3:45 PM TPM-C.3
Biokinetic Changes at the Nano Level – Dissolution and Phagocytosis
Davis JE, Nichols GP
ORAU, HDIAC

4:15 PM TPM-C.4
Revision of ANSI 13.56, Sampling and Monitoring Releases of Airborne Radioactivity in the Workplace of Nuclear Facilities
Whicker JJ, Hoover MD
Los Alamos Nat. Lab., CDC/NIOSH/RHD

4:30 PM TPM-C.5
Nanotechnology Section Business Meeting

2:00 PM TPM-B.1
Modernization and Enhancement of RESRAD Family of Codes
Argonne National Lab, Department of Energy

2:30 PM TPM-B.2
Using Approximations to Guide Understanding of New RESRAD-OFFSITE Source Terms, Releases, and Pathways
LePoire DJ, Gnanapragasam E, Yu C
Argonne National Laboratory

3:00 PM TPM-B.3
Applications of the RESRAD-OFFSITE New Source Term Features for Evaluating Potential Human Health Risks Associated with Radioactive Waste Disposal
Cheng J, Gnanapragasam E, Yu C, Oxenberg T, Bush-Goddard S
Argonne National Laboratory, Nuclear Regulatory Commission

3:30 PM Exhibit Hall
BREAK

4:00 PM TPM-B.4
Impact of the New ICRP Publication 107 Nuclear Decay Data on Dose Coefficients and Risk Assessment
Kamboj S, Gnanapragasam E, Yu C, Favret D
ANL, DOE

4:30 PM TPM-B.5
MILDOS-AREA Evolution
Argonne National Laboratory, U.S. Nuclear Regulatory Commission

5:00 PM TPM-B.6
Environment and Radon Section Business Meeting
2:30 PM – 5:30 PM Room 5

TPM-D: Medical Health Physics, Part II
Co-chairs: Ninni Jacob, Richard Harvey

2:30 PM TPM-D.1
Brain and Eye Lens Doses to Operators in Interventional Radiology: A Monte Carlo Study using Hybrid Computational Phantoms
Tran T, Brown J, Borrego D, Balter S, Bolch WE
University of Florida, National Cancer Institute, Columbia University

2:45 PM TPM-D.2
The Role of the RSO in Radiology QA
Jacob N
Stratton VA Medical Center

3:00 PM TPM-D.3
Herding Cats (Or Managing Rental Lasers in Healthcare)
Peckham ZH, Sturchio GM
Mayo Clinic

3:15 PM TPM-D.4
Evaluation of Dose Indices for Cone Beam Computed Tomography (CBCT) for estimation of Patient Organ Doses
Niskanen HK, Caracappa PF, Xu XG
Rensselaer Polytechnic Institute

3:30 PM Exhibit Hall
BREAK

4:00 PM TPM-D.5
Characterization of Sr/Y-90 Eye Applicator Using Radiochromic Film
Rashidifard NB, Geslin JA, Darois EL
Radiation Safety & Control Services

4:15 PM TPM-D.6
Cool Ways of Renovating Hot Labs
Sims HE, Miller MA
Cleveland Clinic

4:30 PM TPM-D.7
Background Checks for Information Technology Employees
Harvey RP
Roswell Park Cancer Institute

4:45 PM TPM-D.8
Hospital Waste Portal Monitor Performance
Miller A, Sims E, Nordwig G, Pauer T, Manchook J
Cleveland Clinic

5:00 PM TPM-D.9
Cloud-Based Medical Physics; Evolution Relevant to Healthcare System Enterprise
Leuenberger RD
Northeast Ohio VA Healthcare System

5:15 PM TPM-D.10
Testing Protocols for Dental Computer Tomography Cone Beam X-Ray Machines, A Challenge to Standardize Quality Assurance Methods to Achieve Meaningful Results
Mis FJ
Contractor for the NY State Department of Health

2:30 PM – 4:45 PM Room 6

TPM-E: Internal Dosimetry
Co-chairs: Dan Strom, Eugene Carbaugh

2:30 PM TPM-E.1
A Simple Visualization of the “LEKSKaM 2005 Model” of Systemic Plutonium Biokinetics
Strom DJ
Washington State University

2:45 PM TPM-E.2
Dumit-USTUR Decorporation Model Simultaneously Fits Ca-DTPA Affected and Non-Affected Urine Bioassay Data after Plutonium Contamination
Dumit S, Strom DJ, McComish SL, Avtandilashvili M, Tabatadze G, Tolmachov SY
United States Transuranium and Uranium Registries, Washington State University

3:00 PM TPM-E.3
Difficulties with Current Urinary Bladder Dose for Internal Emitters
Eckerman KE, Veinot KG
Easterly Scientific, Y-12 National Security Complex

3:15 PM Exhibit Hall
BREAK

3:45 PM TPM-E.4
A Contingency Plan for Catastrophic Loss of Bioassay Services
Carbaugh EH, Antonio CL, Lynch TP, Nelsen LA
NV5, Mission Support Alliance

4:00 PM TPM-E.5
Radiation Dose to the Bone Marrow from Therapeutic Administrations of 177Lu- DOTATATE
Tsorxe I, Gunasingha R, Kurgat S, Reiman R, Yoshizumi T
Duke University Medical Center, Duke Radiation Dosimetry Laboratory and Duke Radiation Safety Division
4:15 PM
TPM-E.6
The Determination of Actinides in Human Bones and the Impact of Matrix Constituents
Nguyen NT, Sudowe R
Colorado State University

4:30 PM
TPM-E.7
Estimation of the Contribution of Different Exposure Pathways to the Thyroid Dose for the Public Following the Chernobyl and Fukushima Accidents
Maksimov AA, Shinkarev SM
State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

2:30 PM – 5:00 PM
Room 7
TPM-F: Special Session: AIRRS
Chair: Fred Mis

HPS Awards Plenary
Join us Wednesday, 18 July, for the new format of the Awards Program. We look forward to seeing you by 8:00am for the presentation at the Hilton Downtown Cleveland. There will be a buffet breakfast provided that begins at 7:30am. We look forward to seeing you there. Please note, this is in place of the Awards Banquet that was previously on Tuesday evenings.

Do you have a job opportunity?
Are you looking for an HP to fill a position?
Email your job description and HPS will post it at the meeting. Send a pdf or Word document to Tammy Liberati at reception@burkinc.com.

thermo scientific
Sensitive. Simple. Safe.

When worker safety is mission critical.
The Thermo Scientific EPD TruDose Electronic Dosimeter delivers unparalleled real-time dose reading improves your employees’ safety and streamlines workplace efficiency by providing ultra-precise dosage information.

Find out more at thermofisher.com/trudose

© 2018 Thermo Fisher Scientific Inc. All rights reserved. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. Please consult your local sales representatives for details.

Visit us in HPS Booth 105
WEDNESDAY

6:45 AM – 7:45 AM

CEL-4 Room 1

Elements of an Effective Radiation Protection Program

Jim Dillard
Department of Energy

10:30 AM – 11:45 AM

Room 1

WAM-A: Air Monitoring
Chair: James Menge

- **10:30 AM**
 - **WAM-A.1**
 - Mechanisms in Particle Collection in Aerosols
 - Menge JP
 - SME Associates LLC

- **10:45 AM**
 - **WAM-A.2**
 - Validation of a Rapid, Conservative Transuranic Alpha Activity Method in Air Samples
 - Cope SJ, Hayes RB
 - North Carolina State University

- **11:00 AM**
 - **WAM-A.3**
 - Additional Data on a Comparison of 11CO2 and 85Kr as Calibration Gases for a PET Stack Monitor
 - Krueger DJ, Gillenwalters ED, Moroney WR
 - Siemens Molecular Imaging

- **11:15 AM**
 - **WAM-A.4**
 - Using Ba-133 as a Calibration Surrogate for Simulation of Gaseous I-131 in a Silver Zeolite Cartridge
 - Hamideh AM, Wilson CA, Wang WH
 - Louisiana State University

- **11:30 AM**
 - **WAM-A.5**
 - Spanish Moss as a Bio-indicator for Air Pollution in the Low Country of Savannah River Basin
 - Sun ZJ
 - South Carolina State University

10:30 AM – 11:45 AM

Room 3

WAM-B: Department of Energy
Co-chairs: Spencer Mickum, Jennifer Bean

- **10:30 AM**
 - **WAM-B.1**
 - Investigation of Modern Self-Contained, Dry-Storage Irradiators
 - Mickum GS, Rushton RO, Hope ZJ
 - Hopewell Designs

- **10:45 AM**
 - **WAM-B.2**
 - Retrieval and Disposition of Legacy Gamma Calibration Range Sources
 - Paulus LR
 - Sandia National Laboratories

- **11:00 AM**
 - **WAM-B.3**
 - Operational Health Physics Measurement and Decontamination Techniques Implemented with the Metallurgy Process of Thorium-232 at the Sigma Facility
 - Smith EA, Overbay LA, Bliss JL
 - Los Alamos National Laboratory

- **11:15 AM**
 - **WAM-B.4**
 - Clearance of Potentially Activated Materials from Accelerator Facilities and Radiation Generating Devices
 - Hall HA, McCormick DQ, Rajas CA, Schaller IC, Vacca JH
 - Argonne National Laboratory

- **11:30 AM**
 - **WAM-B.5**
 - Attila Evaluation of Dose Rates around the Low-Activity Waste Facility Melter at the Hanford Tank Waste Treatment and Immobilization Plant
 - Bean JM
 - Bechtel National, Inc

10:30 AM – 11:30 AM

Room 4

WAM-C: Academic Institutions
Co-chairs: Kim Kearfott, Thomas Morgan

- **10:30 AM**
 - **WAM-C.1**
 - Undergraduate Health Physics Research at the University of Michigan
 - Kearfott KJ, Pozzi SA, Gilgenbach RM
 - University of Michigan
10:45 AM WAM-C.2
Discovery of Legacy Radium in a Building on a University Campus
Jo MC, Woolf SA, Wilson TR, Howe AC, Beckley KK, Allard DJ
University of Nevada, Reno, Nevada Radiation Control Program, Pennsylvania Bureau of Radiation Protection

11:00 AM WAM-C.3
Future-Proofing an Academic Radiation Safety Program with Cloud-Based Software
Morgan TL, Kwolek G
Columbia University, SafetyStratus

11:15 AM WAM-C.4
Contextual Information for the Potential Enhancement of Annual Radiation Protection Program Review Reports
Gutierrez JM, Emery RJ
UTHealth in Houston, TX

10:30 AM – 11:45 AM Room 7
WAM-F: Waste Management
Chair: John McCormick

10:30 AM WAM-F.1
Towards Ensuring Viable Low-Level Radioactive Wastes Disposal In The United States
Lanza JJ
Florida Department of Health

10:45 AM WAM-F.2
The Scrapyard Delemma - Ghost Radiation and the US Military Cutting Us Off
Matthews SP
State of Washington, Department of Health, Office of Radiation Protection, Radioactive Materials Section

11:00 AM WAM-F.3
Liability Issues and Solutions for Disposition of Unwanted Sealed Sources
McCormick JW
Bionomics, Inc.

11:15 AM WAM-F.4
Capturing Radioactive Waste Before It Leaves the Hospital
Sims HE, Miller MA
Cleveland Clinic

11:30 AM WAM-F.5
Walker SA
U.S. Environmental Protection Agency
Preliminary Program

Wednesday

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Topic</th>
<th>Speaker/Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:15 PM – 2:15 PM</td>
<td></td>
<td>PEP W-1
Measuring and Displaying Radiation Protection Program
Metrics that Matter to Management</td>
<td>Janet Guiterrez</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PEP W-2
Radiology Dosimetry: Organ Doses vs Effective Dose</td>
<td>Cari Borras</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PEP W-3
The MARSAME Methodology: Fundamentals, Applications, and Benefits</td>
<td>Alex Boerner, Tarzia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PEP W-4
Medical Health Physics – Preparing yourself for the future
Preparing for the Future</td>
<td>Kevin Nelson, David W. Jordan
Mayo Clinic Arizona, University Hospitals Cleveland Medical Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PEP W-5
A Radiation Grassroots Response Group-Your Responsibility and How to</td>
<td>John C. White</td>
</tr>
<tr>
<td>2:15 PM – 3:15 PM</td>
<td></td>
<td>CEL-5
Certification Options for Health Physicists</td>
<td>Steven King, Andy Miller</td>
</tr>
<tr>
<td>2:30 PM – 5:30 PM</td>
<td></td>
<td>WPM-B: Aerosol Measurements</td>
<td>Co-chairs: Morgan Cox, Ed Walker</td>
</tr>
<tr>
<td>4:00 PM</td>
<td></td>
<td>WPM-B.4 A Total Uncertainty Analysis For A Radon Reference Laboratory</td>
<td>Jenkins PH Bowser-Morner, Inc.</td>
</tr>
<tr>
<td>4:30 PM</td>
<td></td>
<td>WPM-B.5 Measuring Monodisperse Aerosol Transmission in the Los Alamos Respirable Release Fraction Measurement Chamber</td>
<td>Tao Y, Moore ME Los Alamos National Laboratory</td>
</tr>
<tr>
<td>5:00 PM</td>
<td></td>
<td>WPM-B.6 Estimating Worker Dose of Transuranic Aerosol Inhalation by Measuring Cerium Oxide Powder Releases from Drop Tested Storage Containers</td>
<td>Moore ME, Tao Y Los Alamos National Laboratory</td>
</tr>
<tr>
<td>2:30 PM – 5:15 PM</td>
<td></td>
<td>WPM-C: Environmental Monitoring</td>
<td>Co-chairs: Timothy DeVol, Tamara Yankovich</td>
</tr>
<tr>
<td>3:30 PM</td>
<td></td>
<td>WPM-C.1 Uncertainty/Sensitivity Analysis for the Savannah River National Laboratory–s Environmental Dosimetry Model LADTAP XL©</td>
<td>Stagich BH, Jannik GT, Dixon KL, Minter KM, Martinez NE Clemson University, Savannah River National Laboratory</td>
</tr>
<tr>
<td>3:45 PM</td>
<td></td>
<td>WPM-C.2 Hybrid Extractive Scintillator Resin for Simultaneous Adsorption and Detection of Cesium-137 from Aqueous Solutions</td>
<td>Devol TA, Pujari A, Sistryak R, Husson SM, Bliznyuk VN, Seliman AF Clemson University</td>
</tr>
<tr>
<td>3:00 PM</td>
<td></td>
<td>WPM-C.3 NORM, TENORM and the Challenges in Sampling and Analysis</td>
<td>Lake MI, Thompson DM, Litman R ChemStaff, Sulas Radiation Safety Consultants, LLC</td>
</tr>
<tr>
<td>3:15 PM</td>
<td></td>
<td>Exhibit Hall Foyer</td>
<td></td>
</tr>
</tbody>
</table>
WEDNESDAY

WPM-C.4
3:45 PM
Implications of Wide Area Soil Tests for Cs-137 Fallout
Whitman RT
Indiana University IUPUI

WPM-C.5
4:00 PM
Monitoring for Release Criteria in High Background Areas
Menge JP
SME Associates LLC

WPM-C.6
4:15 PM
Observed Variations in Ionizing and Non-Ionizing Radiation Background using a Spectroscopic Radiation Weather Station
Yuan F, Carmona M, Xiao J, Di Fulvio A, Kearsott KJ
University of Michigan

WPM-C.7
4:30 PM
30 Years Following the Accident at the Chazhma Bay (Primorsky Territory): Environmental Assessment of the Contaminated Areas
Belskikh IS, Kiselev SM, Titov AV, Isaev DV, Starinsky VG, Shandala NK
SRC FMBC, Moscow, Russia

WPM-C.8
4:45 PM
Occupational Radon Assessment in an Exploration Core Processing Facility
Asuni GA, Dshenenkov I, Cowie MI, Khasawinah SA
Saudi Aramco

WPM-C.9
5:00 PM
Biota Dose Assessment of Small Mammals Sampled Near Uranium Mines in Northern Arizona
Jannik GT, Minter KM, Kuhne WW, Kubilus WP, Hinck JE, Cleveland D
Savannah River National Laboratory

2:30 PM – 5:00 PM **Room 5**

WPM-D: Radiation Effects
Chair: Sam Keith

WPM-D.1
2:30 PM
Design and Dosimetry for an Experiment to Assess Carcinogenesis Following Low Dose-Rate, Long Duration Exposures to High LET Radiation
Fabian RM, Borak TB
Colorado State University

WPM-D.2
2:45 PM
Risk of Childhood Leukemia from Exposure to Natural Background Radiation
Kim JJ, Pawel DJ, Puskin JS
ORISE at US EPA, US EPA

WPM-D.3
3:00 PM
Health Effects from Exposure to Thorium
Keith LS, Wohlers DW, Ingerman L
ATSDR, SRC

WPM-D.4
3:15 PM
Lung Cancer Risk from Inhalation of 210Po in Cigarette Tobacco
Harley NH
NYU School of Medicine

WPM-D.5
4:00 PM
Interspecific Extrapolation of Risk Curves for Deterministic Effects
Osovets S, Tikhonova M*
Southern Urals Biophysics Institute

WPM-D.6
4:15 PM
Photon-Fluence-Weighted LET for Radiation Fields Subjected to Epidemiological Studies
Sasaki M
CRIEPI

WPM-D.7
4:30 PM
ALARA: Are we Creating More Hype by Logging Less Dose?
Sowers DA, Dolan DJ
Naval Health Clinic New England, Naval Undersea Medical Institute

WPM-D.8
4:45 PM
Howe MF, Ward PT,Fill JF, Wieman KL
DHS/FEMA/Technological Hazards Division, Radiological Emergency Preparedness Program

[32] Health Physics Society 63rd Annual Meeting
2:30 PM – 5:15 PM Room 6

WPM-E: Homeland Security
Co-chairs: Eva Lee, Lee Ann Veal

2:30 PM WPM-E.1
Strategy toward Long-Term Recovery from Major Nuclear Events
Chen S
Illinois Inst. Technology

2:45 PM WPM-E.2
Permanent Removal of the Risk of Terrorist Attack using Radioactive Materials as a Dirty Bomb (RDD) by Means of Alternative Technologies
Kamen J
Mount Sinai Medical Center

3:00 PM WPM-E.3
A Simulated Radiation Detector for Training First Responders
Stump RF
Texas Tech Health Sciences Center El Paso

3:15 PM WPM-E.4
Conversion Electron Spectroscopy for Isotopic Analysis of Special Nuclear Material
Watson MW, DeVol TA
Clemson University

3:30 PM WPM-E.5
Strategic Planning and Risk Assessment of Radiological Emergency Incidents
Lee EK
Georgia Institute of Technology

3:45 PM WPM-E.6
Using EPA's Risk Assessment Tools for Superfund When Addressing Late-Phase Response to Terrorist Attacks and Nuclear Power Plant Major Accidents
Walker SA
U.S. Environmental Protection Agency

4:00 PM WPM-E.7
Sourceless Performance Verification of Neutron Detectors for Homeland Security Purpose
Iwatschenko-Borho MA
Thermo Fisher Scientific Messtechnik GmbH

4:30 PM WPM-E.8
38 Minutes of Terror: Learning from the Hawaii False Missile Alert
Schuster PF, Munk M
University of Michigan, University of Illinois Urbana-Champaign

4:45 PM WPM-E.8
Homeland Security Section Business Meeting
THURSDAY

6:45 AM – 7:45 AM

Room 1

CEL-6

 Lessons Learned during Independent Verification Activities
David King
Oak Ridge Associated Universities (ORAU)

8:00 AM – 12:15 PM

Room 1

THAM-A: Special Session:
Military Health Physics
Co-chairs: John Cuellar, Anthony Williams, Alan Hale

8:00 AM

THAM-A.1
The “Regional RHO:” The Role of Mentoring in Success of Navy Radiation Health Officers.
Sowers DA
Naval Health Clinic New England

8:15 AM

THAM-A.2
Evaluating the Impact of the Relative Biological Effectiveness of Neutrons in an Urban Environment following a Nuclear Detonation
Dant JT, Kramer K, Stricklin D

8:30 AM

THAM-A.3
Release of Environmental Monitoring Results: Maintaining Assurances to a Community
Fairchild GR, Blouin JL, Fahey SB
United States Navy

8:45 AM

THAM-A.4
Review of Radiation Exposure Aboard USS Nautilus SSN-571, 1955-1956
Johnston TP
National Institute of Standards & Technology

9:00 AM

THAM-A.5
The Colonel, the Captain, and the Commander
Johnston TP
NIST

9:15 AM

THAM-A.6
McKenzie-Carter MA, Case DR, Chehata M, Falo GA, Fong SH, Schaeffer DM, Alleman LA

9:30 AM

THAM-A.7
Improved Casualty Estimations with Updated Population-Based Radiation Protection Factors in DTRA’s HPAC 6.5

9:45 AM

Exhibit Hall Foyer

BREAK

10:15 AM

THAM-A.8
Department of the Navy’s Radiological Affairs Support Program
Sorcic J
U.S. Navy

10:30 AM

THAM-A.9
2018 Nuclear Posture Review’s Impact On Military Health Physics
VanHorne-Sealy JD
U.S. Army

10:45 AM

THAM-A.10
Joint Service Initiatives in Radiation Protection
Williams AS, Cuellar JP, Nemmers SA, Stewart HM, Sharp TJ
Bureau of Medicine and Surgery, U.S. Army Medical Command, Office of the Air Force Surgeon General, Defense Health Agency, Naval Dosimetry Center

11:15 AM

THAM-A.11
Military Section Business Meeting

8:00 AM – 11:45 AM

Room 3

THAM-B: Emergency Response
Co-chairs: Frazier Bronson, William Irwin

8:00 AM

THAM-B.1
How Many Efficiency Calibrations are Needed by HPs for Semi-Quantitative InSitu Spectroscopy for Emergency or Quick-Response Situations?
Bronson FL
Mirion Technologies - Canberra

8:15 AM

THAM-B.2
Radiation Exposure of Workers in Public Shelters and Community Reception Centers in the Aftermath of a Nuclear Detonation
National Institute for Occupational Safety and Health, Varex Imaging, Inc., Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 AM</td>
<td>THAM-B.3</td>
<td>RadResponder Network – A Quick Walkthrough with the Newest Updates</td>
<td>Chen G, Palmer B* EPA, Chainbridge Technologies</td>
</tr>
<tr>
<td>8:45 AM</td>
<td>THAM-B.4</td>
<td>Foresight 2020 - Radiological & Nuclear Emergency Preparedness for the Future: A State Perspective</td>
<td>Irwin WE Vermont Department of Health</td>
</tr>
<tr>
<td>9:15 AM</td>
<td>THAM-B.6</td>
<td>Emergency Preparedness – The Environmental Protection Agency’s Protective Action Guides are Not a Basis for Justified or Adequate Protective Actions during an Emergency</td>
<td>McKenna TJ, Callen JB Consultant, Applied Systems Analysis (IIASA) and Technische Universität Wien (TU W)</td>
</tr>
<tr>
<td>9:30 AM</td>
<td>THAM-B.7</td>
<td>Considering Uncertainty and Risk in Public Protection Decisions</td>
<td>Kraus TD, Cochran LD Sandia National Laboratories</td>
</tr>
<tr>
<td>10:00 AM</td>
<td></td>
<td>Exhibit Hall Foyer</td>
<td></td>
</tr>
<tr>
<td>10:30 AM</td>
<td>THAM-B.9</td>
<td>Emergency Response – Limitation of Dose Projections and Downwind Based Protective Actions.</td>
<td>McKenna TJ, Callen JB Consultant, Applied Systems Analysis (IIASA) and Technische Universität Wien (TU W)</td>
</tr>
<tr>
<td>10:45 AM</td>
<td>THAM-B.10</td>
<td>Development of Data Products Using the Radiation Hazard Scale For Use in Radiation Emergencies</td>
<td>Ansari A, Solame-Alfie A, Blumenthal D, Askin A, Buddemeier B Centers for Disease Control and Prevention, DOE/National Nuclear Security Administration, Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>THAM-B.11</td>
<td>Bone Marrow Selective Shielding Impact on ARS Prognosis</td>
<td>Waterman G, Gustafson JS, Milstein O StemRad</td>
</tr>
<tr>
<td>11:15 AM</td>
<td>THAM-B.12</td>
<td>A Radiation Grassroots Group - Your Responsibility and How-To</td>
<td>White JC VA North Texas</td>
</tr>
<tr>
<td>11:30 AM</td>
<td>THAM-B.13</td>
<td>Towards Net Risk in Evacuation and Reoccupation Decision Making</td>
<td>Braley GS Colorado State University</td>
</tr>
</tbody>
</table>

8:00 AM – 12:00 PM Room 4

THAM-C: Special Session: Ethics and Radiation Protection
Co-chairs: Nicole Martinez, Alexander Brandl

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM</td>
<td>THAM-C.0</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>8:10 AM</td>
<td>THAM-C.1</td>
<td>Introduction to ICRP Publication 138: Ethical Foundations of the System of Radiological Protection</td>
<td>Martinez NE Clemson University</td>
</tr>
<tr>
<td>8:30 AM</td>
<td>THAM-C.2</td>
<td>Ethical Decision Making in Radiation Protection</td>
<td>Brandl A, Tschurlovits M Colorado State University, Vienna University of Technology</td>
</tr>
<tr>
<td>8:50 AM</td>
<td>THAM-C.3</td>
<td>The Respectful Behavior Policy: What is it?</td>
<td>Montgomery D, Gillenwalters E, Marshall E, Martinez N Clemson University, Siemens Molecular Imaging, Health Physics Society</td>
</tr>
<tr>
<td>9:15 AM</td>
<td>THAM-C.5</td>
<td>Creating Accessible Visual Media</td>
<td>Manglass LM, Martinez N Clemson University</td>
</tr>
</tbody>
</table>
THURSDAY

9:30 AM - 12:00 PM

Room 5

THAM-D: External Dosimetry
Co-chairs: Steven Grimm, Chris Passmore

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
</table>
| 8:00 AM | THAM-D.1 | Measurement and Analysis of Beta-ray Spectra at CANDU Reactors | Bohra F, Byun SH, Laranjeiro AS, Wong MM, Atanackovic J, Hanu AR
McMaster University, Ontario Power Generation, Bruce Power |
McMaster University, Bruce Power, Ontario Power Generation |
| 8:30 AM | THAM-D.3 | Site Specific Neutron Dosimetry Correction Factors | Rashidifard NB, Babineau GM, Darois EL
Radiation Safety & Control Services |
| 8:45 AM | THAM-D.4 | Discrepancies of Neutron Dose Reported from a Passive Dosimeter, Electronic Dosimeter, and a Neutron Survey Meter | Grimm S, Rose, Jr P, Spichiger G
Georgia Institute of Technology |
| 9:00 AM | THAM-D.5 | Energy Dependence of TLD-100 Dosimeters in Broad Beam kV X-Ray Beams | Moore BM, Yoshizumi T
Duke University |
University of Michigan |
| 9:30 AM | THAM-D.7 | Observations from an Intercomparison Study of Real Time and Passive Dosimeters When Exposed to Reference Laboratory Conditions | Kirr M, Passmore C
Landauer |
| 10:00 AM | THAM-D.8 | Spatial Non-Uniformities in Air Kerma for Dosimeters Irradiated on a Standard Test Phantom with Cs-137 | Golduber RM, Trimas DJ, Latosz LV, Liu K, Abraham SA, Kearfott KJ
University of Michigan |
| 10:30 AM | THAM-D.9 | Hp(3) Comes into Focus - Views from a Health Physicist | Passmore CN, Kirr M
Landauer |
10:45 AM THAM-D.10
A Dosimetry Calibration Facility in a Space-Constrained Environment
University of Michigan

11:00 AM THAM-D.11
Determination of Site-Specific Neutron Energy Correction Factors for Albedo Dosimeters
Romanyukha A, Hoy AR, Sharp TJ, Consani KA, Benevides LA
Naval Dosimetry Center, National Institute of Standards and Technology, Naval Surface Warfare Center

11:15 AM THAM-D.12
Angular Dependence of Optically Stimulated Luminescence Dosimeters for Use in Radioactive Material Laboratories
Samuels CE, Spichiger GM
Georgia Institute of Technology

11:30 AM THAM-D.13
Lifetime Absorbed Dose Reconstruction of Japanese Wild Boar Using Tooth Enamel with Electron Spin Resonance Dosimetry
Harshman AM, Johnson TE
Colorado State University

9:00 AM – 12:00 PM Room 7
THAM-E: Radiological Accident Assessment Concepts Update Workshop/Training, Part 1
Chair: Michael Howe

9:00 AM THAM-E.1
Radiological Accident Assessment Concepts Update Workshop/Training
Fill J, Ward P, Wierman K, Howe M
DHS/FEMA

9:45 AM THAM-E.2
Approximate Morning Schedule, FEMA Radiological Accident Assessment Concepts Workshop
Howe M
FEMA/DHS

2:30 PM – 5:00 PM Room 1
THPM-A: Contemporary Topics
Co-chairs: Amir Bahadori, Wayne Gaul

2:30 PM THPM-A.1
Decommissioning issues at Advanced Medical Systems
Snee M, Miller A
Ohio Department of Health, Cleveland Clinic

2:45 PM THPM-A.2
A Simplified Approach to Decommissioning Common University Radioactive Material Laboratories
Spichiger GM, Grimm SL
Georgia Institute of Technology

3:00 PM THPM-A.3
Long Term Effects of Tritium In Plastic Liquid Scintillator Vials
Wang JJ, Brandl A
Colorado State University

3:45 PM THPM-A.4
Discussion on Radiation Protection Design under Accident Condition of China Nuclear Power Plant
Wang XX, You W, Mi AJ, Mao YW
China Nuclear Power Engineering Co., Ltd

4:00 PM THPM-A.5
Pencil Beam Algorithm Based on Self-Consistent Profile Kernel Model
Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences

4:15 PM THPM-A.6
Photon Production in Hydrogenous Space Radiation Shields
Bahadori AA, Stegeman LA, Pal Chowdhury R
Kansas State University

4:30 PM THPM-A.7
Highly Sensitive Field Measurement of Hard-to-Detect Contamination Using Portable Instruments
Iwatschenko-Borho MA
Thermo Fisher Scientific Messtechnik GmbH

4:45 PM THPM-A.8
What is the Quantitative Nature of Coping with Risk?
Kumazawa S, Kato K
Former JAERI, RISS
<table>
<thead>
<tr>
<th>Time</th>
<th>Room 3</th>
<th>Room 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:30 PM</td>
<td>THPM-B: Education and Outreach
Co-chairs: Kim Kearfott, Jason Harris</td>
<td>2:30 PM – 4:15 PM Room 4</td>
</tr>
<tr>
<td>2:30 PM</td>
<td>A Discovered Radon Chamber for Educational And Research Purposes
Carmona M, Mata LA*, Shubayr NA, Miller JM, Chung LK, Xiao J, Yuan F, Zhou Q, Kearfott KJ
University of Michigan</td>
<td>THPM-C: Special Session: Instrumentation
Chair: TBD</td>
</tr>
<tr>
<td>3:00 PM</td>
<td>An Advanced, Practical Laboratory Class for Applied Health Physics Measurements for Seniors and Graduate Students
Kearfott KJ, Abraham SA*, Mapes JL, Liu K, Noey JD, Seekamp J, Xiao J
University of Michigan</td>
<td>THPM-D: Special Session: Non-Ionizing Radiation
Chair: Ed Kelly</td>
</tr>
<tr>
<td></td>
<td>Exhibit Hall Foyer</td>
<td>2:45 PM
Laser Safety Officer, Are You Prepared for a Laser Incident?
Barat KL
Laser Safety Solutions</td>
</tr>
<tr>
<td>3:30 PM</td>
<td>Computer Science and Engineering Challenges Associated with a Complexly Instrumented and Geographically Distributed Radiation and Environmental Parameter Measurement System
Yuan F, Xiao J, Carmona M, Nguyen CB, Rush CJ, Kearfott KJ
University of Michigan</td>
<td>2:30 PM
Ionizing Radiation Hazards Generated from High-Intensity Non-ionizing Optical Lasers
Liang TT
SLAC National Accelerator Laboratory</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>THPM-B.5</td>
<td>1:00 PM – 5:00 PM Room 7</td>
</tr>
<tr>
<td>4:15 PM</td>
<td>An Affordable Do-It-Yourself Radiation Detector for Nuclear Science Outreach
Xiao J, El-amir IN, Seekamp J, Chung LK, Gandhi BR, Myslak W, Kearfott KJ
University of Michigan</td>
<td>THPM-E: Radiological Accident Assessment Concepts Update Workshop/Training, Part 2
Chair: Michael Howe</td>
</tr>
<tr>
<td></td>
<td>THPM-E.1</td>
<td>1:00 PM
Approximate Afternoon Schedule, FEMA Radiological Accident Assessment Concepts Workshop
Howe M
FEMA/DHS</td>
</tr>
</tbody>
</table>
Practical External Dosimetry Management

Tosh Ushino

This course addresses practical management of external dosimetry program. We will review the fundamentals of radiation interactions, radiation sources, and detector theory. We will discuss different types of dosimeters (passive and active), their characteristics, and how radiation interacts with them. In addition to the standard dosimeter badges for beta, gamma and x-ray radiation, the course will cover dosimeters for neutron, eye, extremity and environmental monitoring. The course will also present multi-badging and EDE calculations.

The course will discuss potential sources of errors, dose investigations, dose assignment and documentation, how radiation dosimetry services work, and Do-It-Yourself-Quality Assurance. Example investigations are presented and discussed. If time permits, the course will also cover use of the Varskin code for calculating shallow dose from contamination.

Internal Dosimetry Review, Standards, and Ongoing Considerations

Charles “Gus” Potter, PhD, CHP

In the 21st century environment, the focus on engineering controls for radiological work has greatly reduced, if not eliminated, the need for a true “routine” internal dosimetry program. The internal dosimetrist is now typically focused on reviewing exposure measurements, documenting zeros, and reducing the program scope and associated cost. An effective program, therefore has to be agile, integrate with radiation protection operations, and determine doses on an infrequent basis. Therefore, the presence of individuals with considerable experience in dose calculation is greatly reduced. The need for operational health physicists to be able to calculate internal doses is still important for those times when individuals do get exposed internally. Accordingly, this presentation will provide a refresher in simple techniques for internal dose calculation. The discussion will center around the model systems currently incorporated into US regulation and how they are employed in determining radionuclide intake and effective dose. In addition, information on pending updates of ICRP recommendations for internal dosimetry will be provided as well as discussion of ongoing controversies over calculational methods and evaluation of bioassay data.

Radiological Dispersal Device (RDD) and Nuclear Detonation Response Tools for ROSS and HPs Engaged in Radiological and Nuclear Emergency Response

Brooke Buddemeier, Bill Irwin, Angela Leek, Matt McKinley, Jim Rogers

Radiological Operations Support Specialists (ROSS) and ROSS training instructors will present the latest radiological dispersal device and nuclear detonation response tools and resources. Brooke Buddemeier, CHP of Lawrence Livermore National Laboratory will present guidance for radiation protection following a broader range of nuclear detonation scenarios such as might be associated with a Nation State actor. He will review new DHS first responder RDD response training videos which demonstrate the empirically validated dose rates and doses first responders would potentially experience in carrying out their duties following detonation of an explosive RDD. These videos should confirm for responders that they can do their job in this contaminated environment without significant accumulated dose. Brooke will also share the results of DHS work that shows how Preventive Radiological Nuclear Detection instrumentation can be repurposed for consequence management.

Angela Leek of Iowa, Matt McKinley of Kentucky and Bill Irwin of Vermont are Type 1 ROSS and ROSS training instructors for the Counter Terrorism Operations Support group. They will describe tools taught to and used by Radiological Operations Support Specialists. These tools are available for other health physicists to use in radiological and nuclear emergency preparedness, too. The tools include incident command and incident planning job aids and the ROSS Toolkit. The ROSS Toolkit is an html-based collection of national and international guidance for radiation control perimeters, radiation dose decision points, personnel contamination screening levels, shelter and evacuation guidance and fact sheets and other resources for nuclear power plant, RDD and nuclear detonation emergencies. They will close the course with an interactive session demonstrating the use of RadResponder to implement the ten-point monitoring plan following detonation of an RDD.
This course is sponsored by the Radiological Operations Support Specialist Steering Committee which is comprised of Jim Rogers, FEMA Project Manager for ROSS; Dr. Dan Blumenthal, CHP of the DOE National Nuclear Security Administration, Ben Stevenson of the DHS Science and Technology Directorate’s National Urban Security Technology Laboratory and Dr. Bill Irwin, CHP of the Conference of Radiation Control Program Directors. It serves as continuing education for both the American Academy of Health Physics and the nearly 50 people currently trained as ROSS.

8:00 AM – 5:00 PM AAHP 3
Radiation Risk Assessment
Fred Dolislager, Stuart Walker

Radiation Risk Assessment is a full-day advanced course that focuses on specific technical and regulatory issues that Remedial Project Managers (RPMs) and On-Scene Coordinators (OSCs) address when managing Superfund sites that have a risk assessment conducted for radioactive contaminants. By taking the course, participants achieve the following objectives:

- Explore methods for conducting site-specific risk assessments.
- Discover practical recommendations for improving the radiation risk assessments conducted at your site.
- Master information about radiation risk assessment process.

The instructional methodology for this course includes lectures and demonstrations of using EPA’s risk and dose assessment calculators developed by the Superfund remedial program. The target audience for this course is RPMs, OSCs, risk assessors and others that want to obtain a working knowledge on conducting Superfund radiation risk assessments.

The World’s Leading Manufacturer and Designer of Radiation Detectors

Global Nucleonics

GM Tubes
He3 and BF3 Neutron Proportional Counters
X-Ray Proportional Counters.
Ionization Chambers

If our standard product offerings do not match your specific needs, Global Nucleonics has the design and engineering capability to produce detectors to your specifications including high temperature and ruggedized models

www.GlobalNucleonics.com | info@GlobalNucleonics.com | 281-578-7900 | Houston,TX

HPS Booth #119
The Professional Enrichment Program (PEP) provides a continuing education opportunity for those attending the Health Physics Society Annual Meeting. The two hours allotted each course ensure that the subjects can be discussed in greater depth than is possible in the shorter programs offered elsewhere in the meeting.

On Sunday, 15 July, a series of 18 courses will be offered between 8:00 am - 4:00 pm.

In addition to the above-mentioned sessions for Sunday, seven PEP lectures are scheduled on Monday-Wednesday, 12:15 - 2:15 pm. Registration for each two-hour course is $99 and is limited to 60 attendees on a first-come, first-served basis. Those whose registrations are received before the preregistration deadline will be sent confirmation of their PEP course registration.

Students with a current ID card will be admitted free of charge to any sessions which still have space available after the waiting list has been admitted. Student admission will be on a first-come, first-served basis and will only begin 15 minutes after the start of the session to allow for completion of ticket processing.

Please Note!!

Please be on time for your sessions. The lecturer will begin promptly at the scheduled time. Please allow time for check-in. The HPS reserves the right to schedule a substitute speaker or cancel a session in case the scheduled speaker is unavailable.

Attendees not present at the starting time of the session cannot be guaranteed a space, as empty spaces will be filled from the wait list at that time. Spaces left after the wait list has been admitted may be filled with students. If your duties at the meeting cause you to be late for your lecture (e.g., chairing a session), contact the PEP registration desk so that your name can be placed on the waiver list and your space held.

Refund Policy

Requests for PEP refunds will be honored if received in writing by 13 June. All refunds will be issued AFTER the meeting. Exceptions will be handled on a case-by-case basis.

ONCE AGAIN

The Professional Enrichment Program (PEP) handouts for the Annual Meeting will not be available in hard copy. For those who preregister, you will be provided with an access code for downloading the handouts approximately two weeks prior to the meeting. For those who register for courses on-site, you will be provided the code when you register.

Please note, not all instructors provide downloadable information.
PEP 1-A CAP88-PC Version 4.1 Update
Brian Littleton, Ray Wood
Room 1

The EPA is preparing a new release of the CAP88-PC model, version 4.1. This new release updates the existing version 4.1 with new data and includes some small modifications to the user environment. This course will help users of the CAP88-PC model to understand the changes in the new version relative to previous versions, describe the bases for the model, and instruct users on proper use of the model for regulatory compliance. The course will include descriptive presentations about the model along with demonstrations on using CAP88-PC version 4.1 for specific types of scenarios. Additional information on future update paths and regulatory approaches will also be presented.

PEP 1-B Status of ANSI N42 RPI & HSI standards
Morgan Cox
Room 3

This summary covers the current status of American National Standards Institute (ANSI) N42 standards for health physics instrumentation in two sections:

This section includes the discussion of some seventeen ANSI N42 standards for Radiation Protection Instrumentation (RPI) in effect, being revised or being combined, including those for performance & testing requirements for portable radiation detectors, in ANSI N42.17A for normal environmental conditions and in ANSI N42.17C for extreme environmental conditions, being combined; and now published ANSI N42.323A/B, for calibration of portable instruments over the entire range of concern, i.e., in the normal range and for near background measurements; performance criteria for alarming personnel monitors in ANSI N42.20; replaced airborne radioactivity monitors in ANSI N42.30 for tritium, ANSI N42.17B for workplace airborne monitoring, ANSI N42.18 for airborne effluent on-site monitoring, and ANSI N323C for test and calibration of airborne radioactive monitoring; instrument communication protocols in ANSI N42.36; in-plant plutonium monitoring in ANSI N317 is being revised; reactor emergency monitoring in ANSI N320 is being revised; neutron detectors for Homeland Security in ANSI N42.38 in revision; portable detection systems used for Homeland Security in ANSI N42.53; portable contamination detectors for emergency response in ANSI N42.58 needing some attention; and ANSI N42.60 training for radiological/nuclear initial response, being developed.

PEP 1-C RadNet Deployable
Michael R. Messer
Room 4

The RadNet deployable consists of 40 deployable monitoring stations. These monitoring stations are equipped with low and high-volume air samplers, gamma exposure radiation detector, near-real-time satellite communications, GPS and weather station.

These units can be deployed to critical monitoring locations after a radiological incident has occurred or where an imminent threat is encountered. EPA relies on federal, state and local partners to assemble and operate RadNet deployables during a radiological incident. The PEP workshop will consist of an orientation of the RadNet deployable and program followed by an exercise to allow participants to gain hands on experience to build, operate and tear down the deployable monitor.
PEP 1-D Power Reactor Dry Fuel Storage Neutron Measurements - Practical Applications
Pat LaFrate
Room 5

ANI Information Bulletin 11-02, Neutron Monitoring, requires nuclear utilities to perform neutron characterizations where significant neutron exposure is a concern, including reactor containments, Independent Spent Fuel Storage Installations (ISFSIs), Dry Shielded Canisters (DSCs) and station neutron sources. The purpose of this evaluation was to determine if the current personnel TLD Neutron Correction Factors (NCFs) were appropriate for worker neutron exposure from Dry Fuel Storage campaigns and neutron monitoring activities.

Objective: Upon completion of this course, students will receive a brief overview of neutron measurement principles using a neutron spectrometer, Tissue Equivalent Proportional Counters (TEPCs), TLDs, and neutron sensitive electronic dosimeters along with some practical examples of neutron spectroscopy and TEPC analyses relevant to health physicists.

PEP 1-E Non-ionizing Radiation: An Overview of Biological Effects and Exposure Limits
B. Edwards
Cree Inc.
Room 6

This course provides a fundamental overview of nonionizing radiation (NIR) hazards and biological effects. Course attendees will learn the basic terminology and nomenclature, spectral region designations, regulatory framework, and consensus guidance associated with NIR. The course material will begin at the edge of the ionizing part of the electromagnetic (EM) spectrum and walk participants through a tour of the optical, radiofrequency (including microwave), and extremely low frequency (ELF) portions of the EM range, finally ending with static electric and magnetic fields. The existence of a series of exposure limits covering the entire NIR spectrum forms one of the course's basic themes. This continuous line of "safe" exposure levels helps establish the concept that NIR dose response curves are at least well enough understood at all parts of the spectrum to provide a reasonably safe exposure envelope within which we can operate. After completing this course, attendees will be conversant in the major sources and associated hazards in each part of the NIR spectrum, along with the recognized exposure limits and control measures for those sources. Armed with this information, safety professionals can better recognize, evaluate, and communicate the hazards associated with the spectrum of significant NIR sources, and address workers' concerns in a credible, fact-based, knowledgeable, and professional manner. While some knowledge of optical, radiofrequency, ELF, and static electromagnetic field characteristics may be helpful, both experienced and novice health physicists with NIR interests or responsibilities will benefit from this course.

PEP 1-F Understanding the Legal Concepts for Radiation Litigation – Part I
Raymond Johnson
Room 7

Plaintiffs in radiation litigation cases will normally file a lawsuit based on a claim of negligence on the part of a radioactive material licensee. To justify a negligence case the plaintiff has to present four elements in a lawsuit.

1. **Standard of Care** – the plaintiff has to establish that the licensee has a duty to protect workers. In other words the licensee is legally bound not to cause an unreasonable risk of harm to workers or others. The question then is, "What is the duty owed?" Is it ALARA? Is it the federal (or state) dose limits? How much radiation can a worker receive?

2. **Breach of Duty Owed** – the plaintiff has to show that the licensee failed to implement radiation safety practices, for achieving the duty owed, which resulted in an unacceptable radiation exposure?

3. **Proof of Causation** – the plaintiff has to prove that the breach of duty led directly to the damages claimed? This leads to questions, such as, does radiation cause the ailment claimed by the plaintiff? Was the dose sufficient? Was the time sequence proper (taking latency into account)? Could other factors have caused the ailment? Is the ailment more likely than not to have been caused by radiation, i.e. greater than 50% probability of causation?

4. **Damages** – legally recognized damages may include: physical pain, emotional distress, economic loss, medical expenses, and loss of consortium. The strategy of the plaintiff's attorney will be to dramatically present the four elements for negligence and appeal to the juror's fears (such as fear of cancer). Typically both the plaintiff and attorney will rely upon popular radiation myths and junk science to justify their lawsuit. They may fail to distinguish between real and perceived risks. Both mythology and perceived risks will be addressed as well as other defense strategies and how to avoid radiation litigation.

Sunday 10:30 AM – 12:30 PM

PEP 2-A ASTM Standards that Either Directly Impact or Influence Radiation Protection Planning and/or Operations
Ed Walker
Room 1

This presentation will be in two parts. The first part will describe the organization of ASTM, The different types of standards...
generated, and the processes that produce consensus standards. This will include a description of the ease of membership in ASTM, the benefits of receiving published standards, and the involvement for any member to participate in the development and approval process for new and existing standards. A brief description of five of the standards committees (out of a total of 140) that have generated standards that either directly impact or are relative to the design, installation, and operation of equipment, systems and operating protocols. The second part of the presentation will describe the sub-committees within the five main committees that generate and maintain the standards of interest for a radiation protection program. A brief description of standards by each subcommittee will be described and how and/or why the radiation protection programs and associated radiation protection professional should incorporate, either directly or by reference, these standards into any radiological facility radiation protection program.

PEP 2-B Integration of Health Physics into Emergency Response
Stephen Sugarman
Room 3

In the event of a radiation incident it is essential that the radiological situation is properly, yet rapidly, assessed so that a proper response can be planned. Various techniques can be employed to help gather the necessary information needed. There are many groups of responders that need to be considered such as law enforcement, EMS, fire, and healthcare providers. Most, if not all, of these groups have relatively little understanding of the realistic hazards associated with radiation. It is not always necessary to incorporate wholesale changes to the way things may usually be done in the absence of radioactive materials. For instance, law enforcement officers routinely incorporate stand-off distances when approaching a suspect or other dangerous situation. Firefighters are familiar with the use of protective clothing and respiratory protection. EMS and healthcare providers routinely incorporate contamination control practices – universal precautions and proper patient handling techniques – into their everyday jobs. Coupled with a good event history and other data, health physicists can help to develop a strategy for safely and effectively responding to a radiological event. Support duties can also include assessment of dose responders or patients and assistance with communication issues affecting incident response, medical care, or with external entities such as regulators and the media. As time goes on and more information, such as bioassay or biological dosimetry data, plume data, and other additional data is received the health physicist will be called upon to interpret data and communicate its meaning to the decision-makers and otherwise advise incident command. It is, therefore, essential that health physicists are able to seamlessly integrate themselves into the response environment and effectively communicate their findings to a wide variety of people.

PEP 2-C A Forgotten Nuclear Accident: Bravo
Casper Sun, PhD, CHP
Room 4

This is a PEP presentation based on decades of personal experience from managing the Marshall Islands Radiological Safety Program (MIRSP) at Brookhaven National Laboratory (BNL).

It starts with the selection of Bikini Island for the US Pacific Test Ground in the Republic of Marshall Islands (RMI). Later, on March 1st 1954, the Bravo detonated. Since then, Bikini has never been the same – space and the people. The catastrophic event was resulted (1) from unpredicted weapon yields and (2) by the nuclear debris and fallout reached to the east of many inhabited Atolls.

BNL scientists, played an important role on the radiological health and medical care of expose populations funded by the Department of Energy (DOE) for about 40 years. The MIRSP was established for bioassay monitoring and internal dose assessment. The overview will I explain the dose assessment methods include whole-body counting, urinalysis and LLNL’s environmental and diet/intake studies.

Finally, the presentation summarized and analyzed the operational activity as lesson learned that could applied and implemented to modern emergency planning and accident preparedness.

PEP 2-D NanoTechnology and Radiation Safety
Mark Hoover
Room 5

This course will present an update for health physics professionals on relevant national and international experience and resources in nanotechnology safety, including a graded approach to sampling, characterization, and control of nanomaterials and advanced manufacturing hazards in the workplace. Case studies of good practice will be presented, as well as experience “from when things have gone wrong”. Highlights from NCRP Report 176 on Radiation Safety Aspects of Nanotechnology will be included. Nanotechnology and nanoengineered structural materials, metals, coatings, coolants, ceramics, sorbents, and sensors are increasingly being evaluated and applied in radiation-related activities. Anticipating and recognizing hazards, evaluating exposures,
and controlling and confirming protection from risks to safety, health, well-being, and productivity during these activities is essential.

PEP 2E Laser Safety for Health Physicists

B. Edwards

Cree Inc.

Room 6

This course provides an overview of laser physics, biological effects, hazards, and control measures, as well as a concise distillation of the requirements in the ANSI Z136.1-2014 Standard for the Safe Use of Lasers. Non-beam hazards, emerging issues, and accident histories with lessons learned will also be covered. Course attendees will learn practical laser safety principles to assist in developing and conducting laser safety training, performing safety evaluations, and effectively managing an institutional laser safety program. While some knowledge of laser hazards will be helpful, both experienced and novice health physicists with laser safety responsibilities will benefit from this course. Attendees may find it helpful to bring their own copy of ANSI Z136.1-2014.

PEP 2F Preparation as an Expert or Fact Witness and Risk Communication – Part II

Raymond Johnson

Room 7

As a specialist in radiation safety you may be called upon to provide testimony for either the plaintiff or defense in a radiation lawsuit. To qualify as an expert you will need to meet the Daubert Criteria. Namely, your testimony has to be grounded in defensible science, your hypotheses must be testable, subject to peer review, with a known error rate according to existing standards, and generally accepted within the scientific peer community. You will also be challenged on your credentials as an expert in terms of your education and experience directly relevant to the case. Having advanced degrees, such as a Ph.D., or certification as CHP, may not be adequate credentials relevant to a particular case. While someone may be an expert in some area, this does not necessarily qualify them as an expert for the particular elements of a lawsuit. Part of the professional ethics for CHPs is not to practice beyond their area of knowledge and expertise. Opposing attorneys will scrutinize every aspect of your credentials to identify weaknesses that may be used to discredit your expertise. If you do not meet the Daubert Criterial, the opposing counsel may ask the judge not to allow your testimony. As an expert you may be called upon to use tools for effective risk communication to explain radiation risks to attorneys, judges, and jurors. We will review some of these tools in this session as well as what it means to “tell the truth” and elements of credibility for a witness. We will also review tools for counseling upset workers (such as active listening) as a strategy for avoiding radiation litigation.

Sunday 2:00 PM – 4:00 PM

PEP 3A Statistics, Uncertainty, and Detection Decisions – A Practical Review for Health Physics Practitioners

Doug van Cleef

Room 1

This course presents a quick but thorough review of the basic elements of counting statistics, uncertainty, and detection decisions and their application to radiation detection. In the course of the review, we will review basic procedures for estimating and propagating uncertainty, appropriate sources of reference information for detection system performance, and consensus standards guidance for these practices. The course will include ample time for Q&A to allow attendees to address specific application considerations. The course is two hours in duration and the American Academy of Health Physics will grant XX Continuing Education Credits (course number) for completion.

Objective: Upon completion of this course, students will have a solid working foundation for understanding the principles and applications of uncertainty as it applies to the radiation detection processes.

Who should attend: Experienced technologists who need a review of the current thinking on application of statistics for radiation measurements and reporting, or new technologists seeking a solid, practical introduction to the importance of statistics in radiation measurements. The subject will presented almost entirely from a layman’s perspective, so experienced statisticians who are seeking a thorough review of statistical principles might be disappointed in the depth of the content.

PEP 3B Where Did This Come From? Lessons Learned from High-Routine Bioassay Investigations

Eugene Carbaugh

Room 3

This PEP class provides actual case studies of high-routine bioassay measurements and discusses the investigation process, resolution, and lessons learned from each. High routine bioassay results can come from several sources, including normal statistical fluctuation of the measurement process, interference from non-occupational sources, and previous occupational intakes, as well as new intakes. A good worker monitoring program will include an investigation
process that addresses these alternatives and comes to a reasonable conclusion regarding which is most likely. A subtle nuance to these investigations is the possibility that a newly detected high-routine measurement might represent an old intake that has only now become detectable. This can result from the worker being placed on a different bioassay measurement protocol, a change in analytical sensitivity, unusual biokinetics associated with highly insoluble inhalations, or lack of a clear work history. As sites close down, the detailed dosimetry records of specific worker exposures are archived, becoming relatively inaccessible, with only summary dose information available. Likewise, the “tribal knowledge” of the site becomes lost or seriously diluted as knowledgeable employees retire or move on. Therefore, it is incumbent upon the site performing a potential intake investigation to thoroughly address the possible alternatives or face the consequence of accepting responsibility for a new intake. The presenter has encountered all of the foregoing issues in the course of investigating high-routine bioassay measurements at the U.S. Department of Energy Hanford Site. The important lessons learned include, 1) have good measurement verification protocols, 2) confirm intakes by more than one bioassay measurement, 3) conduct interviews with workers concerning their specific circumstances and recollections, 4) have good retrievable site records for work history reviews, 5) exercise their specific circumstances and recollections, and 6) clearly communicate the conclusions to the worker, the employer, and the regulatory agency.

PEP 3-C Coping with Natural Disasters and Radioactive Materials
Philip Simpkins
Room 4

Baker Hughes, a GE company (BHGE) operates in 120 countries, with approximately 70,000 employees, generating $23 Billion Combined Revenue with 125 years of experience. At BHGE doing the right thing takes priority over everything else. As a result, Health, Safety and Environment (HSE), Quality and Integrity are built into everything that we do. That includes when natural disasters threaten!

As a Company, we work with radioactive materials, at our bases, multiple jobsites both onshore and offshore, we also have sources in transit and on dedicated marine vessels; this coupled with the people tooling and equipment we have to meet Legal, Client and Internal requirements successfully, means that we need robust procedures, competent personnel and excellent communications between all parties concerned.

This session will look at the problems and solutions associated with using licensed radioactive materials in and around the Gulf Coast States, including the Gulf of Mexico particularly Texas and Louisiana and how as a Company BHGE complies with all of its requirements and responsibilities when natural disasters threaten or strike.

PEP 3-D Promise and Peril of “Citizen Science” & Anticipating and Adapting to Change within Your Organization
Robert Emery
Room 5

The practice of radiation safety is actually the convergence of a variety of professional disciplines, thus changes and developments that affect the field can emerge from various sources. This PEP is designed to address two contemporary issues confronting radiation safety program operations. The first contemporary topic covers the promise and peril of “citizen science” and why this matters to radiation safety. The second contemporary topic covers strategies for keeping your radiation safety program on course in a sea of constant change.

Promise and Peril of “Citizen Science” & Why This Matters to Radiation Safety

The proliferation of personal electronic devices has resulted in an exponential expansion in the ability to rapidly gather and disseminate information – some accurate, some not so accurate, and some downright wrong. With virtually every member of the workforce and community now equipped with this technology, the notion of “citizen science” has expanded, wherein citizens and employees can collect and instantly transmit data and information about exposures and situations. While this technique holds great promise as a “force multiplier” to address various concerns, the technique is largely unfiltered and can result in the dissemination of misinformation, apprehension, and confusion. This presentation will discuss the evolution of “citizen science” and how it has changed with recent technological developments and then will provide a series of suggested steps for radiation safety programs to take to proactively address the challenge.

Strategies for Keeping Your Radiation Safety Program on Course in a Sea of Constant Change

The University of Texas School of Public Health recently conducted a straw poll of approximately fifty very experienced health & safety professionals and the results were astonishing: 80% had reported to the person they current report to for a period of less than 5 years, and 25% for a period of less than 1 year! These striking results underscore the old adage that “change is constant”. But adapting to change is not something that is traditionally addressed in academic health & safety programs. Interestingly, although change is indeed constant, the underlying data that drives radiation safety programs...
doesn’t change. What does change is the framing of the delivery of this important information to ensure continued program support. This presentation will discuss the dilemma of constant change and provide some tips on the personal management of change and will present options to consider for communicating essential information to the ever-changing environment.

PEP 3-E Performing ANSI Z136-based Laser Hazard Calculations
B. Edwards
Cree Inc.
Room 6
This course provides a step-by-step guide to performing laser hazard calculations based on the principles and methodology in the ANSI Z136.1-2014 Standard for the Safe Use of Lasers. Attendees will gain an understanding of how to complete these calculations for continuous wave, pulsed, and repetitively pulsed laser systems. While some knowledge of laser hazards will be helpful, both experienced and novice health physicists with laser safety responsibilities will benefit from this course. However anyone not already familiar with the fundamentals of radiometry and the arcane conventions of the Z136 series of standards for the safe use of lasers would benefit from attending the Laser Safety for Health Physicists PEP so they’ll have some familiarity with the concepts under discussion. Attendees will also find bringing their own copy of ANSI Z136.1-2014 a useful reference.

PEP 3-F Radiation Dosimetry in Nuclear Medicine Therapy
Michael Stabin
Room 7
Dose estimates for radiopharmaceuticals may be established based on data from preclinical (i.e. animal species) or clinical studies (involving human patients or volunteers). This session will describe current approaches in both areas, and show examples. Traditional mathematical model-based anatomical models have now been replaced with more realistic standardized anatomical models based on patient image data and have been incorporated into the software code OLINDA/EXM 2.0. The code employs these anthropomorphic models, the new ICRP human alimentary tract (HAT) model and updated (ICRP 103) tissue weighting factors for calculation of effective dose. Adjustments to traditional dose calculations based on patient-specific measurements are routinely needed, especially in therapy calculations, for marrow activity (based on measured blood parameters or image data), organ mass (based on volumes measured by ultrasound or Computed Tomography (CT)), and other variables. Many interesting radiopharmaceutical therapy agents are currently in use, for thyroid disorders, neuroendocrine tumors, and treatment of bone metastases. Clinical experience, success rates, and management of normal tissue toxicity with many nuclear medicine therapy agents will be reviewed. The need for patient-individualized approaches to therapy will be emphasized. Discussions of relevant release criteria for therapy patients and current issues in radiobiology will be included.

Monday 12:15 pm – 2:15 pm

PEP M-1 So now you’re the RSO: Elements of an Effective Radiation Safety Program
Thomas Morgan
Columbia University
Room 3
Designation as a Radiation Safety Officer brings with it unique opportunities and challenges. The author will offer insights on how to manage a radiation safety program from his 20+ years’ experience as a RSO at medical, university, and industrial facilities. Regardless of the type of facility, number of radiation workers, or scope, an effective radiation safety program must be driven from the top down. Senior management must embrace the goals of the program. The RSO must have the trust of senior management as well as a good working relationship with line managers and workers. These relationships are built on the integrity, knowledge, experience, and accessibility of the RSO. This talk will focus on the role of the RSO in achieving and maintaining an effective program.

PEP M-2 Ethical Decision Making with Link to Safety Culture & Radiation Safety’s Role in Mitigating Insider Security Risks
Robert Emery, Janet Gutiérrez
Room 4
The practice of radiation safety is actually the convergence of a variety of professional disciplines, thus changes and developments that affect the field can emerge from various sources. This PEP is designed to address two contemporary issues confronting radiation safety program operations. The first contemporary topic covers ethical decision-making and the link to safety culture. The second contemporary topic covers the radiation safety professional’s role in mitigating insider security risks.

Ethical Decision-Making Tools for Enhancing Organizational Safety Culture
Recent investigations of several tragic events have repeatedly identified the absence of a culture of safety as a common contributing factor. An organization’s safety culture is a
collective reflection of individual decisions made by its workforce, each carrying with them ethical implications. Safety culture, good or bad, is the sum product of many individual ethical decisions, yet the notion of ethical safety decision-making is not often discussed. This presentation will describe ethical dilemmas safety professionals can encounter, and how the decisions that are made can impact an organization’s overall safety culture. A set of ethical decision-making tools will be presented, along with a suggested path forward for actually improving safety culture within an organization.

Radiation Safety’s Role in Mitigating the “Insider Threat” Security Risk

While organizations maintain many layers of controls to prevent outsiders from gaining unauthorized access to cause loss or harm, persons who have been granted legitimate access can become an “insider threat”, and because they are very difficult to detect, cause over $100 billion in losses annually. Although the typical insider targets assets or data, in some cases their actions can also have significant impacts on workplace and environmental health and safety. Because much of an organization’s radiation safety program activities are carried out with the workers in their workplace, this represents a unique opportunity to assist in the possible detection of insider threats. This presentation will discuss the threats represented by insiders and will detail their recognized traits so that radiation safety professionals can enhance their situational awareness and report suspicions to the appropriate authorities.

PEP T-2 Radiological and Nuclear Terrorism Tools; Customize for your Community

Brooke Buddemeier
Lawrence Livermore National Laboratory
Room 3

Radiation safety professionals may be called upon to help put radiological “dirty bombs” and nuclear detonations into perspective. Template presentations and several free software tools available to help you create customized presentations that demonstrate impacts of these events in your community. When used in conjunction with recent guidance from the Department of Homeland Security and National Council of Radiation Protection and Measurement, these tools can be used create powerful visual demonstrations that put the science into context on how to respond in a manner that can significantly reduce impacts and casualties.

PEP W-1 Measuring and Displaying Radiation Protection Program Metrics that Matter to Management

Janet Gutiérrez
Room 1

It is currently quite rare for organizations to maintain standalone radiation safety programs. Resource constraints and workplace complexities have served as a catalyst for the creation of comprehensive environmental health & safety (EH&S) or risk management (RM) programs, which include, among other health and safety aspects, radiation safety programs. But many of these consolidations were not inclusive of staff training to instill an understanding of the areas now aligned with the radiation safety function. This situation is unfortunate because when armed with a basic understanding of the other safety programs, the radiation safety staff can provide improved customer service and address many simple issues before they become major problems. This Professional Enrichment Program (PEP) is designed to address this shortcoming by providing an overview of a number of key aspects applications to a variety of scenarios, including specific examples from medical x-ray facilities, radiation sources and power reactors. The overall goals of radiation shielding will be presented with the intent of providing a general refresher on the importance of radiation shielding. References for this PEP include (but are not limited to) Radiation Shielding, by Shultis & Faw, ANS, 2000; Reactor Shielding for Nuclear Engineers, N.M. Schaeffer (ed.), AEC TID-25951, 1973 and Engineering Compendium on Radiation Shielding, R. G. Jaeger (Editor), Springer-Verlag, 1968.
of EH&S and RM programs from the perspective of practicing radiation safety professionals who now are involved in a broader set of health and safety issues.

This PEP session will focus on “Measuring and Displaying Radiation Protection Program Metrics That Matter to Management”. Radiation protection programs typically accumulate data and documentation so that regulatory officials can assess compliance with established regulations. The implicit logic associated with this activity is that compliance equates to safety. But in this era of constricted resources, mere regulatory compliance is no longer sufficient to justify all necessary programmatic resources. Radiation protection programs are now expected to readily demonstrate how they add tangible value to the core missions of an organization. The demonstration of this value is expected to be in the form of some sort of performance metrics, but this is an area in which many radiation safety professionals have not been trained. The issue is further compounded by the need to display the metrics in manners that are succinct and compelling, yet another area where formal training is often lacking. This session will first describe a variety of possible radiation protection program performance measures and metrics, and then will focus on the display of the information in ways that clearly convey the intended message. Actual before and after data display “make-overs” will be presented, and ample time will be provided for questions, answers, and discussion.

The particular topics included have been consistently identified as extraordinarily useful to participants in the highly successful week-long “University of Texas EH&S Academy”.

PEP W-2 Radiology Dosimetry: Organ Doses vs Effective Dose
Cari Borrás
Room 3

The course will focus on the definition and determination of quantities and units used for radiation protection in the medical field, highlighting the problems in patient dosimetry. Although many scientific papers quantify occupational and medical exposures in terms of effective dose, its use in patient dosimetry—where dose limits do not apply—carries large uncertainties. The International Commission on Radiological Protection (ICRP) defined effective dose as a quantity to be used only for occupationally exposed workers and members of the public, where doses are assumed to be well below 100 mSv, and thus, only stochastic effects are considered. At doses above about 0.5-1 Sv, where tissue reactions (deterministic effects) may occur, the dosimetric quantity to use is the absorbed dose in the irradiated organ or tissue, modified by the radiobiological effectiveness of the radiation specific to the biological endpoint of concern; it is expressed in Gray (Gy). Effective dose is applied to a reference person—the terms wR and wT used in its computation are derived averages over age and gender from large populations—and it was never intended to provide a measure of risk to individuals, as is the case in medical exposures. That measure can be inferred only by determining organ doses. Current methods of organ dose estimations, like placing calibrated ion chambers, diodes, film and/or thermoluminescent or optically stimulated luminescent dosimeters on patients or in phantoms, making measurements in physical phantoms that simulate patients, and performing Monte Carlo radiation transport calculations using mathematical phantoms, not only have large uncertainties, but also they may be very time-consuming. Examples of staff and patient dose assessment in radiological procedures, especially in relatively high exposure modalities such as interventional radiology and computed tomography (CT), will be illustrated. The ability of electronically calculating, displaying, transferring and archiving doses from radiography, mammography, CT and diagnostic and interventional fluoroscopy—with its advantages and caveats—will be explored. The recent ‘Patient - Radiation Dose Structured Report’, developed by the Digital Imaging and Communications in Medicine (DICOM) Standards Committee, which estimates organ absorbed doses based on individual image acquisition parameters and specific patient characteristics, will be introduced. The Committee on Biological Effects of Ionizing Radiation (BEIR VII) has calculated risks for many organs/tissues exposed to low doses of low Linear Energy Transfer (LET) radiations and ICRP has published new threshold dose values for tissue reactions. With these values, risks to patients can be estimated. However, the real question is whether we need to assess individual risk in order to optimize patient protection. If the goal is not to assess risks, but to reduce them, dose-related machine parameters can be measured easily and compared against previously-established diagnostic reference levels (DRLs) generated for a specific modality and type of procedure. DRL-acceptable dosimetric quantities for projection radiography and fluoroscopy are incident air kerma (Kai), entrance surface air kerma (Kae or ESAK) and air kerma area product (PKA, also called KAP or DAP), and, additionally, for interventional fluoroscopy, reference point air kerma K,p,r. In CT, currently accepted metrics are volumetric CT dose index (CTDvol), dose-length-product (DLP) and size-specific dose estimate (SSDE). Examples of DRLs for adult and pediatric studies will be presented and discussed.

PEP W-3 The MARSAME Methodology: Fundamentals, Applications, and Benefits
Alex Boerner, Tarzia
Room 4

Published in January 2009, the “Multi-Agency Radiation Survey and Assessment of Materials and Equipment” manual
(MARSAME) was a joint effort between the U.S. Department of Energy (DOE), the U.S. Department of Defense (DoD), the U.S. Environmental Protection Agency (EPA), and the U.S. Nuclear Regulatory Commission (NRC) to aid sites in the clearance of materials and equipment (M&E). The MARSAME manual supplements the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), published in 1997.

As cited in the MARSAME, a variety of M&E can be applied to this process, including (but not limited to) metals, concrete, tools, equipment, piping, conduit, and furniture. The MARSAME methodology is a defense in depth methodology which involves a stepwise approach to material release. The process starts with an initial historical assessment to identify potential radionuclides and radioactive processes that could have impacted the material. After this initial knowledge is gained, Measurement Quality Objectives (MQOs) are developed as a basis to plan characterization and final surveys for material release. Finally, the survey plans and survey implementation results are reviewed against Data Quality Assessment (DQA) criteria developed to ensure that the survey results meet the original objectives.

Flexibility and a graded approach are inherent components of the MARSAME methodology. Because large quantities of M&E potentially affected by radioactivity are present in the United States and abroad, owners of the M&E need to identify acceptable disposition options. Thirteen disposition scenarios are described in MARSAME. If the methodology is appropriately planned and implemented, the benefits of the MARSAME approach include worker and public protection, reduction in the amount of disposed radioactive waste, reuse of materials (resulting in environmental and material sustainability advantages), and cost savings.

This class introduces participants to the MARSAME methodology. It will be an interactive learning environment and (limited) exercise discussions are included. (Please bring a calculator just in case!). During the class, practical applications of MARSAME will be discussed to present how the process can be adapted to release material under a variety of scenarios. Lessons learned from MARSAME implementation will also be discussed.

PEP W-5 A Radiation Grassroots Response Group-Your Responsibility and How to
John C. White
Room 5

In any major event, National and even State resources can take some time to marshal and be effective. During that critical early period, it is essential that local responders have the ability to use equipment and contact Subject Matter Experts already present in the local area. In a major Radiological Incident of any type, Radiation Safety professionals will be a critical need. It is essential that the Health Physicist know the local responders and emergency managers, and have a working relationship with those groups. It is also essential that an understanding of local resources is widespread, to be able to bring the maximum capabilities to bear to reduce exposures and manage the response environment. This Lecture presents one such solution to this difficult problem. North Texas is the fourth largest Metropolitan area in the country, but has 143 municipal authorities in a Home Rule State. The North Texas Radiation Response Group was formed to gather and disseminate information, and provide a common meeting event for responders to become familiar with area capabilities, determine equipment gaps, and advance training and radiological response programs in the Metro area. Significant success has been achieved with equipment purchase, training capabilities notification, and face-to-face meetings of those with common purpose.

This lecture will demonstrate the need for your action in your area, and provide you the basic building blocks to organize your own local Group with a focus on radiological response.

PEP W-4 Medical Health Physics – Preparing yourself for the future
Kevin Nelson, David W. Jordan
Mayo Clinic Arizona, University Hospitals Cleveland Medical Center
Room 7

Medical health physics is tightly integrated with technology, and technology advancements in the next two decades can be expected to dramatically outpace those of the past two decades, which have been considerable. Developing skills and preparing for an uncertain future requires some extrapolation – and some imagination. Some likely future trends for healthcare technology and the practice of medical physics will point to options and opportunities for developing new practice models to deliver value in the healthcare enterprise of 2038 and beyond. This presentation will explore how technology might impact the role of medical physicists and medical health physicists, and provide insight on how to best prepare yourself to meet the demands facing your institution in the years ahead.
CEL-1 7:15 AM – 8:15 AM
Modeling Data for Radiological Impact Assessment: Humans and Biota
Stephanie Bush-Goddard, Tanya Oxenberg
United States Nuclear Regulatory Commission
Room 3

Protection of the environment from radiation is nothing new. Both humans and biota are well studied and the regulatory framework is well established. However, there are gaps in biota data and an explicit assessment to integrating human and biota doses is not well documented.

This Continuing Education Lecture explores the International Atomic Energy Agency (IAEA) MODAIRA II (Modelling and Data for Radiological Impact Assessment) Working Group (WG) 3 program. MODAIRA’s primary objective is to enhance the capabilities of Countries to simulate radionuclide release, mobilization, and transfer in the environment and, thereby, assess resulting public exposure. Working Group 3, entitled: “Assessments and Control of Exposures to Public and Biota for Planned Releases to the Environment”, charter is to develop and apply an integrated approach to studying the impact of environmental releases on both humans and biota from ionizing radiation resulting from applications of radionuclides in power production, medicine, research, and industry.

Therefore this lecture will explore international and national guidance and regulations to demonstrate compliance with protecting the environment against ionizing radiation for humans and biota. It will also summarize state of the art methods and computer codes for performing dose assessments and identify a set of scenarios where explicit assessment of the environment would be necessary.

CEL-2 7:15 AM – 8:15 AM
Retired but not Yet Green Field
Robert Miltenberger
Room 4

This presentation discusses some the issues associated with retirement and ways to stay active in the profession without necessarily being actively employed as a Health Physicist. While most applicable to the eligible for retirement professional, the presentation provides ideas for expanded career growth to professionals at earlier stages of their career.

CEL-3 6:45 AM – 7:45 AM
Channeling Stephen Hawking: How Lessons from the Renowned Astrophysicist can inform and inspire Great Health Physics for the Future
Mark Hoover
Room 1

From making theoretical predictions about radiation and black holes, to developing a theory of cosmology, to commenting on the future of humanity, Stephen Hawking (1942-2018) was a thoroughly discerning thinker and communicator. This lecture will revisit some of the many scientific and philosophical insights of this renowned champion of discovery that can inform and inspire our pursuit of great health physics in the future. Individuals planning to attend the lecture are invited to read the entertaining and informative writings of Prof. Hawking, including his 1988 classic A Brief History of Time, as well as his 2011 assessment of the impactful products of the scientific giants of history: The Dreams That Stuff Is Made of: The Most Astounding Papers of Quantum Physics and How They Shook the Scientific World.
Having a GOOD radiation protection program is often not good enough. Along with identifying measures developed and implemented to achieve continuing compliance with applicable regulations, as well as providing a framework for addressing radiation safety issues in the workplace, an effective program also provides a process for continuous and systematic improvements. Although there is a vast array of guidance with regards to radiation protection program development, ALARA planning, and conducting self-assessments, very little discusses strategies and mechanisms for ensuring continuous improvement is achieved. This discussion will highlight the essential elements of an effective radiation protection program that looks beyond specific regulatory requirements and discusses incorporation of operational experiences and lessons learned, implementing an integrated safety management approach to optimize worker protection from all hazards, and cultivating a culture of safety in a radiation protection environment.

Oak Ridge Associated Universities (ORAU) has served as an independent (third party) verification (IV) contractor for both the U.S. Department of Energy and the U.S. Nuclear Regulatory Commission. This paper summarizes lessons learned ORAU has gathered from decades of IV activities across a broad range of decontamination and decommissioning (D&D) projects. As presented herein, lessons learned are grouped into their applicable phase of the data lifecycle as outlined in the Multi-Agency Radiation Site Survey and Investigation Manual (MARSSIM) (DOE/NRC 2000), including: planning, implementation, and assessment. These lessons learned may be common to several sites, or may be identified at a single site but significant enough to cause a dramatic shift in D&D activities. In either case, the objectives of this paper are to contribute to the health physics body of knowledge and to help D&D projects avoid similar issues that tend to detrimentally impact budgets, project schedules, and customer/contractor reputation.
Preliminary Program

SCHEDULE AT-A-GLANCE

All events at the convention center unless otherwise noted.

Saturday, 14 July

<table>
<thead>
<tr>
<th>All AAHP Courses take place at the Huntington Convention Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAHP 1A Practical External Dosimetry Management</td>
</tr>
<tr>
<td>8:00 AM - 12:00 PM</td>
</tr>
<tr>
<td>AAHP 1B Internal Dosimetry Review, Standards, and Ongoing Considerations</td>
</tr>
<tr>
<td>1:00 PM - 5:00 PM</td>
</tr>
<tr>
<td>AAHP 2 Radiological Dispersal Device (RDD) and Nuclear Detonation Response Tools for ROSS and HPs Engaged in Radiological and Nuclear Emergency Response</td>
</tr>
<tr>
<td>8:00 AM - 5:00 PM</td>
</tr>
<tr>
<td>AAHP 3 Radiation Risk Assessment</td>
</tr>
<tr>
<td>8:00 AM - 5:00 PM</td>
</tr>
<tr>
<td>Student Worker Orientation</td>
</tr>
<tr>
<td>5:45 PM - 6:45 PM</td>
</tr>
<tr>
<td>Center Street A, Hilton</td>
</tr>
</tbody>
</table>

Sunday, 15 July

<table>
<thead>
<tr>
<th>All PEP Courses take place at the Huntington Convention Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEP 1-A thru 1-F</td>
</tr>
<tr>
<td>8:00 AM - 10:00 AM</td>
</tr>
<tr>
<td>PEP 2-A thru 2-F</td>
</tr>
<tr>
<td>10:30 AM - 12:30 PM</td>
</tr>
<tr>
<td>PEP 3-A thru 3-F</td>
</tr>
<tr>
<td>2:00 PM - 4:00 PM</td>
</tr>
<tr>
<td>Student/Mentor Reception</td>
</tr>
<tr>
<td>6:00 PM - 7:00 PM</td>
</tr>
<tr>
<td>Hope E, Hilton</td>
</tr>
</tbody>
</table>

Sunday PEP Locations

<table>
<thead>
<tr>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEP A = Room 1</td>
</tr>
<tr>
<td>PEP B = Room 3</td>
</tr>
<tr>
<td>PEP C = Room 4</td>
</tr>
<tr>
<td>PEP D = Room 5</td>
</tr>
<tr>
<td>PEP E = Room 6</td>
</tr>
<tr>
<td>PEP F = Room 7</td>
</tr>
</tbody>
</table>

Monday, 16 July

| **CEL-1** Modeling Data for Radiological Impact Assessment: Humans and Biota |
| 7:15 AM - 8:15 AM |
| Room 3 |
| **CEL-2** Retired but not Yet Green Field |
| 7:15 AM - 8:15 AM |
| Room 4 |
| **MAM-A** Plenary Session: Health Physics and the Realm of Low Dose Radiation |
| 8:30 AM - 12:30 PM |
| Global Center Ballroom AB |
| **PEP Program** 12:15 PM - 2:15 PM |
| **M-1** Elements of an Effective Radiation Safety Program |
| 12:15 PM - 2:15 PM |
| Room 1 |
| **M-2** Ethical Decision Making with Link to Safety Culture & Radiation Safety’s Role in Mitigating Insider Security Risks |
| 12:15 PM - 2:15 PM |
| Room 2 |
| **ABHP Exam** |
| 12:30 PM - 4:30 PM |
| Center Street A, Hilton |
| **Poster Session** |
| 1:00 PM - 3:00 PM |
| Exhibit Hall |
| **MPM-A** Medical Health Physics, Part I |
| 3:00 PM - 5:15 PM |
| Room 1 |
| **MPM-B** Special Session: Measurement of Ac-227 in the Workplace |
| 3:00 PM - 4:15 PM |
| Room 2 |
| **MPM-C** Special Session: International Collaboration Committee |
| 3:00 PM - 5:10 PM |
| Room 3 |
| **MPM-D** Radiation Biology |
| 3:00 PM - 4:15 PM |
| Room 4 |
| **MPM-E** Special Session: Rad Air NESHAPs |
| 3:00 PM - 4:15 PM |
| Room 5 |
| **MPM-F** Exhibitors of the HPS: A Special Discussion on Products and Services |
| 3:00 PM - 5:15 PM |
| Room 6 |
| **Welcome Reception, Sponsored by PerkinElmer** |
| 5:30 PM - 7:00 PM |
| Exhibit Hall A |

Tuesday, 17 July

| **CEL-3** Channeling Stephen Hawking: How Lessons from the Renowned Astrophysicist can inform and Inspire Great Health Physics for the Future |
| 6:45 AM - 7:45 AM |
| Room 1 |
| **TAM-A** Special Session: AAHP |
| 8:00 AM - 12:00 PM |
| Room 1 |
| **TAM-B** Environment and Radon Section: Modeling Special Session |
| 8:00 AM - 12:00 PM |
| Room 2 |
| **TAM-C** Detection and Measurement |
| 8:00 AM - 12:00 PM |
| Room 3 |
| **TAM-D** Special Session: Medical Health Physics |
| 8:00 AM - 12:00 PM |
| Room 4 |
| **TAM-E** Special Session: Accelerator |
| 8:00 AM - 12:00 PM |
| Room 5 |
| **TAM-F** Special Session: AIRRS |
| 8:00 AM - 12:00 PM |
| Room 6 |
| **AAHP Awards Luncheon** |
| Noon - 2:00 PM |
| TBD |

Complimentary Lunch

| **PEP Program** 12:15 PM - 2:15 PM |
| **T-1** Radiation Shielding - A Lost Art? |
| 12:15 PM - 2:15 PM |
| Room 1 |
| **T-2** Radiological and Nuclear Terrorism Preparedness Tools: Customized for Your Community |
| 12:15 PM - 2:15 PM |
| Room 2 |
| **TPM-A** Special Session: AAHP |
| 2:30 PM - 5:15 PM |
| Room 1 |
| **TPM-B** Environment and Radon Section: Modeling Special Session |
| 2:30 PM - 4:00 PM |
| Room 2 |
| **TPM-C** Special Session: Aerosol Measurements |
| 2:30 PM - 6:00 PM |
| Room 3 |
| **TPM-D** Medical Health Physics, Part II |
| 2:30 PM - 5:15 PM |
| Room 4 |
| **TPM-E** Internal Dosimetry |
| 2:30 PM - 4:45 PM |
| Room 5 |
| **TPM-F** Special Session: AIRRS |
| 2:30 PM - 5:00 PM |
| Room 6 |
| **AAHP Open Meeting** |
| 5:00 PM |
| TBD |

KEY

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPM</td>
<td>Monday PM Session</td>
</tr>
<tr>
<td>TAM</td>
<td>Tuesday AM Session</td>
</tr>
<tr>
<td>TPM</td>
<td>Tuesday PM Session</td>
</tr>
<tr>
<td>WAM</td>
<td>Wed. AM Session</td>
</tr>
<tr>
<td>WPM</td>
<td>Wed. PM Session</td>
</tr>
<tr>
<td>THAM</td>
<td>Thurs. AM Session</td>
</tr>
<tr>
<td>THPM</td>
<td>Thurs. PM Session</td>
</tr>
</tbody>
</table>

Preliminary Program 53
NOTE FOR CHPs

The American Academy of Health Physics has approved the following meeting-related activities for continuing education credits for CHPs:

- Meeting attendance is granted 1 CEC per contact hour, excluding meals and business meetings;
- AAHP 8-hour courses are granted 16 CECs each;
- HPS 2-hour PEP courses are granted 4 CECs each;
- HPS 1-hour CELs are granted 2 CECs each.
Health Physics Society’s 63rd Annual Meeting
15-19 July 2018 • Cleveland, Ohio

HPS Member Number: __ __ __ __ __
Name for badge: (First) __________________________ (Last) __________________________
Affiliation (for badge) (limit to 18 characters and spaces): __
Address: ___
City: ___State: ___________________ Zip/Postal Code: ______________________________________
Phone: ___Fax: ___
Email (for confirmation): __

REGISTRATION FEES: (Mark Appropriate Box)

PROFESSIONAL DEVELOPMENT SCHOOL REGISTRATION FEE, 18-20 July 2018 (does not include HPS Meeting Reg)
☐ PDS Registration HPS MEMBER $ 445 $ 545
☐ PDS Registration NON MEMBER $ 595 $ 695
☐ PDS Full-Time Student Registration $ 200 $ 300
Choose 3 breakout sessions in rank order. You will attend 2 of the 3 due to space limitations. http://www.hps.org/meetings/pds.html
___ MRI Safety ___ Hot Lab ___ Instrument Cal ____ X-Ray QC ____ Dose Tracking

MEETING REGISTRATION FEES, 15-19 July 2018
☐ HPS Member (Sun. Reception, Mon. Lunch) $ 495 $ 595
☐ Non-Member* (Sun. Reception, Mon. Lunch) $ 645 $ 745
☐ Emeritus Member (Sun. Reception, Mon. Lunch) $ 248 $ 298
☐ One Day ONLY ☐ Mon ☐ Tues ☐ Wed ☐ Thurs $ 280 $ 305
☐ Student (Receptions) $ 70 $ 70
☐ One Day ONLY Student ☐ Mon ☐ Tues ☐ Wed ☐ Thurs $ 40 $ 40
☐ Companion (Receptions, Breakfast, Mon. Lunch) $ 110 $ 110
☐ Emeritus Companion (Receptions, Breakfast, Mon. Lunch) $ 55 $ 55
☐ HPS Member PEP Lecturer (Sun. Reception, Mon. Lunch) $ 195 $ 230
☐ HPS Member CEL Lecturer (Sun. Reception, Mon. Lunch) $ 345 $ 380
☐ AAHP Awards Lunch Ticket(s) (Tues.) CHP $ 10 $ 10
☐ AAHP Lunch Ticket(s) (Tues.) Guest $ 15 $ 15
* Includes Complimentary 2018 Associate Membership – FIRST TIME MEMBERS ONLY – You will need to join at http://www.hps.org/join to submit your information and mailing address in order to take advantage of this offer. If you have questions, email Laurie Mullins at lmullins@burkinc.com.

Would you like your name included on the Attendee List? ☐ Yes ☐ No
If you agree, your name, address and email information will be provided to all HPS Exhibitors after the meeting.

SOCIAL PROGRAM
☐ Great Lakes Brewery Tour (Mon 7/16, 4pm-6pm)
☐ Annual HPS 5K RUN/WALK (Tues 7/17, 6:30am-8:30am)
☐ Cleveland Museum of Art (Tues 7/17, 9:30am-1:30pm)
☐ Night Out - Hofbrauhaus Cleveland (Tues 7/17, 6:30pm)
☐ Pub Crawl (Wed, 7/18, 6:30pm)
Shirt Size: ☐ S ☐ M ☐ L ☐ XL ☐ XXL ☐ XXXL (XXL and XXXL is available with Preregistration Only)

Please read and check the participant assumption of risk and waiver located on the next page.

PAYMENT INFORMATION – Government Requisitions are accepted for registration, however Purchase Orders are NOT accepted for PEP, AAHP, Social Registration. HPS Tax ID # 04-6050367

Check Payment: Health Physics Society, 1313 Dolley Madison Blvd., Suite 402, McLean, VA 22101
Cardholder’s Information: ☐ VISA ☐ MasterCard ☐ American Express ☐ Discover
Card Number: __
Exp. Date: _________________________________CV2: ____________________
Billing Address: __
Cardholder Name: ___
Phone Number: __
Signature: __
Email Address for receipt: ___

Registration Section Total
Social Program Total
AAHP/PEP Total (From Other Form)
TOTAL FEES ENCLOSED

If FAXing registration form, (703) 790-2672 please do not mail the original.

Please see AAHP/PEP Registration form and Disabilities information on next page.
DISABILITIES: The Annual Meeting is accessible to persons with disabilities. Please specify assistance required and a HPS representative will contact you.

AAHP COURSES

Saturday, 7/14
- AAHP-1A Practical External Dosimetry Management (Ushino), 8am - 12pm: $200
- AAHP-1B Internal Dosimetry Review, Standards, and Ongoing Considerations (Potter), 1pm - 5pm: $200
- Registering for both AAHP-1A and AAHP-1B: $359
- AAHP-2 Radiological Dispersal Device (RDD) and Nuclear Detonation Response Tools for ROSS and HPS Engaged in Radiological and Nuclear Emergency Response (Buddemeier), 8am - 5pm: $395
- AAHP-3 Radiation Risk Assessment (Dolislager), 8am - 5pm: $395

PROFESSIONAL ENRICHMENT PROGRAM

Sunday, 7/15
- **8:00 AM-10:00 AM**
 - 1-A CAPP88-PC Version 4.1 Update (Littleton, Ray Wood)
 - 1-B Status of ANSI N42 RPI and HSI Standards (Cox)
 - 1-C RadNet Deployable (Messer)
 - 1-D Power Reactor Dry Fuel Storage Neutron Measurements - Practical Applications (LaFrate)
 - 1-E Non-ionizing Radiation: An Overview of Biological Effects and Exposure Limits (Edwards)
 - 1-F Radiation Litigation Part I - Understanding the Legal Concepts for Radiation Litigation (Johnson)

Sunday, 7/15
- **10:30 AM-12:30 PM**
 - 2-A ASTM Standards that Either Directly Impact or Influence Radiation Protection Planning and/or Operations (Walker)
 - 2-B Integration of Health Physics into Emergency Response (Sugarman)
 - 2-C A Forgotten Nuclear Accident: Bravo (Sun)
 - 2-D NanoTechnology and Radiation Safety (Hoover)
 - 2-E Laser Safety for Health Physicists (Edwards)
 - 2-F Radiation Litigation Part II - Preparation as an Expert or Fact Witness and Risk Communication (Johnson)

Sunday, 7/15
- **2:00 PM-4:00 PM**
 - 3-A Statistics, Uncertainty and Detection Decisions - a Practical Review for Health Physics Practitioners (van Cleef)
 - 3-B Where did this come from? Lessons learned from high-route bioassay investigations (Carbaugh)
 - 3-C Coping with Natural Disasters and Radioactive Materials (Simpkins)
 - 3-D Promise and Peril of “Citizen Science” & Strategies for Keeping Your Radiation Safety Program on Course in a Sea of Constant Change (Emery)
 - 3-E Performing ANSI Z136-based Lazard Hazard Calculations (Edwards)
 - 3-F Radiation Dosimetry in Nuclear Medicine Therapy (Stabin)

Monday, 7/16
- **12:15 PM-2:15 PM**
 - M-1 So now you are the RSO: Elements of an Effective Radiation Safety Program (Morgan)
 - M-2 Ethical Decision Making with Link to Safety Culture & Radiation Safety’s Role in Mitigating Insider Security Risks (Gutierrez, Emery)

Tuesday, 7/17
- **12:15 PM-2:15 PM**
 - T-1 Radiation Shielding: A Lost Art? (Waller)
 - T-2 Radiological and Nuclear Terrorism Preparedness Tools, Customized for Your Community (Buddemeier)

Wednesday, 7/18
- **12:15 PM-2:15 PM**
 - W-1 Measuring and Displaying Radiation Protection Program Metrics that Matter to Management (Gutierrez)
 - W-2 Radiology Dosimetry: Organ Doses vs Effective Dose (Borris)
 - W-3 The MARSAME Methodology: Fundamentals, Applications, and Benefits (Boemer, Tarzia)
 - W-4 Medical Health Physics – Preparing yourself for the future (Nelson, Jordon)
 - W-5 A Radiation Grassroots Response Group: Your Responsibility and How to (White)

Cancellation/Substitution Policy: Substitutions of meeting participants may be made at any time without penalty. All conference and tour cancellations must be in writing and must reach the HPS Office by **13 June** to receive a refund. All refunds will be issued after the meeting minus a 20% processing fee. Refunds will not be issued to no-shows.